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Chapter 1

INTRODUCTION

1.1 Electromagnetic Scattering

Radar cross section (RCS) prediction is currently an active research area [1-31].

It has been known for nearly 100 years that objects reflect radio waves. But with the

increasing use of radar since World War II, the determination of the electromagnetic

scattering from an object illuminated by an incident plane wave has generated great

practical and academic interest. References [1] through [1231 are a small survey of the

current literature addressing this research topic, and these references demonstrate the

ongoing investigations into electromagnetic scattering.

The ultimate objective in this research area is to develop a general electromag-

netic wave scattering model for arbitrary targets. These arbitrary targets could be

perfect conductors or penetrable bodies. They could also be perfect conductors coated

with dielectric and/or magnetic materials. Further, they could have any geometric

shape. As Knott [33] and Senior (25] point out in their respective surveys of RCS pre-

diction techniques, electromagnetic scattering problems fall naturally into three cate-

gories according to body size: the low-frequency, resonant, and high-frequency regions.

These regions do not refer to the actual frequency used, but to the size of the target

with respect to wavelength. When the object is much smaller than the wavelength, all

parts of the body are strongly coupled to each other. The electromagnetic scattering

depends only slightly on shape and varies with the fourth power of the frequency [33].

Shape details are too small to resolve because the wavelength is too long. When objects

are between approximately one and ten wavelengths in size, they lie in the resonance

region. All parts of the body interact with each other. Finally, a target larger than

approximately ten wavelengths is in the optical region. The scattering mechanisms

*.p~* . aa a ~a*
a. . X *.'J. ~ ~ ' % ,~4'~a* '
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are highly localized, and the various target elements typically act independently of one

another except for the shadowing of one element by another.

1.2 Theoretical Approaches

Several approaches to the prediction of electromagnetic scattering are apparent

from the literature. The approach taken depends on the target size with respect to

wavelength, as discussed in the previous paragraph. The high frequency techniques are

the asymptotic theories of geometrical optics (GO) [32,33,75,76] and physical optics

(PO) [33-36,75,76]. To compensate for deficiencies in the GO theory, an extension has

been developed by Keller known as the geometric theory of diffraction (GTD) [33,37-

46,75,76]. Similarly, Ufimtsev developed an extension for physical optics known as the

physical theory of diffraction (PTD) [33,41,45,47,48,75,76]. These will be discussed in

more detail below. The low frequency techniques are the numerical theories of the

method of moments (MOM) [33,60-110] and the finite element method [171. The num-

ber of unknown surface current coefficients limits the size of target which can be handled

due to computer storage and processing limitations. As computer storage and process-

ing capabilities continue to expand in the future, the upper frequency at which these

numerical techniques can be used will increase proportionately. Additionally, hybrid

methods [75,76,89-98] have been devised which merge GTD and MOM [75,76,89-92,94]

or PTD and MOM [75,76,93]. These approaches are designed to use each technique on

the respective regions of a target where that particular technique has its best predictive

capability.

1.3 Geometrical Optics

For the calculation of electromagnetic scattering at high frequencies (where the

dimensions of the target are large with respect to wavelength) the asymptotic theories

have been developed. The oldest and most familiar theory is geometrical optics (GO)

which is also known as ray tracing [32,33,75,76]. The basic assumption of GO is that

'-:',',, ''. :'',',)' -;' .',_,-,'-." -' .'.;'-',.-' '--i, -'-, . ' . -,'-...', , _ ; '-, .-;," ..........-...-.......-...-........................-..- ,...'.'...........-......-...-.-...,'... ,.
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energy propagates along slender tubes (rays). Since the field components are transverse

to the direction of propagation, GO solutions are not valid near discontinuities such

as edges. Implicit in this method is the need to find the specular point on the body

where the reflection occurs, for it is the principal radii there that govern the spreading

of the rays away from the body. If this point is too close to an edge, the assumed field

structure no longer satisfies the assumptions of the method. One failure of GO is that

it predicts an infinite RCS for a flat or singly curved surface where one or both radii

of curvature is infinite. This failure can be overcome by the theory of physical optics.

1.4 Physical Optics

Physical optics (PO) [33-36,75,76] uses a GO approximation of the fields induced

on a body surface and integrates the induced fields to obtain the scattered field. The

induced surface fields can be approximated for nonconducting as well as conducting

surfaces. If the scattering direction varies too much from the specular direction, PO

fails by wider margins to yield the correct scattering behavior. Further, the integrals

of PO can be evaluated exactly for only a few cases that include flat plates, cylinders,

and spherical caps viewed at axial incidence. Targets can be modelled as a grouping

of structural features for which PO solutions exist. Thus, PO is restricted to the high

frequency region where interactions between major structural features of the target are

minimal.

1.5 Geometrical Theory of Diffraction

As mentioned previously, the geometrical theory of diffraction (GTD)[33,37-

46,75,76] and the physical theory of diffraction (PTD) [33,41,45,47,48,75,76] were de-

veloped by Keller and Ufimtsev, respectively, as extensions to GO and PO. Unlike GO,

in which the specular direction is unique, GTD permits diffracted rays to lie along any

of the generators of a forward cone whose apex lies at the local point of edge diffraction.

The GTD estimates of the field at a point on a diffracted ray depend on the distance

,*,-.-. ,-...-.* - ..- . ..- .-- -. .... - ..... - . . -.. * . .. -. - ..... 5.- . -.- --. ----:.* 4 -- ':z. -: -*-& .-. . -



Chapter 1. Introduction 17

from the edge and upon the local angles of arrival and departure. Using this approach,

GTD compensates for edge diffraction whereas GO cannot. As in GO, one need only

sum all the rays reaching the point of observation.

Since GTD is a ray tracing technique it suffers from a serious drawback. At the

transitions between the shadow regions and the illuminated regions the GTD approx-

imations produce singularities. The uniform theory of diffraction (UTD) [49-51] and

the uniform asymptotic theory of diffraction (UAT) [50,52-59] are current attempts to

compensate for this error. The uniform theories overcome the transition region sin-

gularities at reflection and shadow boundaries. However, at points where an infinite

number of rays converge (caustics) all of these high frequency techniques predict infi-

nite fields. Further, none of the high frequency techniques can account for the surface

traveling wave phenomenon. This is because these methods treat localized scattering

phenomena, while the surface traveling wave involves the entire surface.

1.6 Physical Theory of Diffraction

Analogous to the relation between GTD and GO is the relation between the

physical theory of diffraction (PTD) and PO. Ufimtsev recognized that the PO theory

was inadequate in many instances, particularly when the scattering direction is far

from the specular direction [33]. He postulated the existence of a "nonuniform" (edge)

current in addition to the "uniform" (physical optics) surface current. This edge current

is designed to compensate for the departure of the target structure from the assumptions

implicit in the PO theory. Such departures include shadow boundaries and geometrical

discontinuities such as edges. PTD attempts to modify PO when there are surface

discontinuities where diffraction becomes important.

1.7 Method of Moments and Finite Element Method

For the calculation of electromagnetic scattering at low frequencies or the res-

onance region (where the dimensions of the target are on the order of a wavelength)



Chapter 1. Introduction 18

the numerical theories of the method of moments (MOM)[33,60-110] and the finite el-

ement method [17] have been developed. The MOM basically solves the integral form

of Maxwell's equations numerically for the surface currents induced on a scatterer by

an incident plane wave. The finite element method numerically solves the differential

form of Maxwell's equations throughout the region of interest. For both methods the

number of unknowns to be calculated limits the size of the target which can be handled

due to computer storage and processing limitations. Hence, their designation as low

frequency techniques. For more detail on the MOM approach see the next section.

This thesis is an application of the MOM numerical technique to an arbitrary

target as defined above. Rao, Wilton, and Glisson [81] have used this approach for

perfectly conducting targets with arbitrary geometries. They used triangular patches

to constri'ct arbitrary targets. They then defined a set of basis functions [64,81] which,

when combined with triangular patch modelling, greatly simplify the equations for the

electric surface currents.

Medgyesi-Mitschang, et al [71,73] have applied the MOM to coated perfectly

conducting and penetrable targets. However, the targets must be bodies of revolu-

tion (BOR) and cannot have arbitrary geometries. Using only BORs provides a great

simplification in the equations and computations for the surface currents due to the

symmetry of the target.

This thesis is an attempt to lay the theoretical foundation for the prediction of

the radar cross section of coated perfect conductors with arbitrary geometries. Chapter

2 briefly discusses the method of moments and its application to coated targets with

arbitrary geometries. Chapter 3 provides the problem formulation and the method of

solution. A description of the experimental RCS measurements is contained in Chapter

4. Chapter 5 presents the results of the experimental RCS measurements and the

theoretical RCS predictions. A comparison of the experimental RCS measurements and

the theoretical RCS predictions is also contained in this chapter. Chapter 6 outlines the

generalization to multi-layered coatings of the approach used in this thesis to compute

the RCS for a single layer of coating. Finally, Chapter 7 contains the conclusions and

suggested future efforts.

I
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Chapter 2

METHOD OF MOMENTS

2.1 Introduction

The method of moments (MOM) approach has the advantage that the governing

integro-differential equations to which the MOM is applied are exact solutions to the

electromagnetic scattering problem. The interactions of all the structural elements of

the target are accounted for. Further, since the MOM solves for the induced surface

currents explicitly, the MOM has application to near-field (electromagnetic compata-

bility) as well as far-field (RCS) phenomena. Disadvantages include the large number

of unknowns to be calculated (n) for most practical problems and the inversion of an

n x n matrix. Alternatively, the n equations in n unknowns may be solved iteratively

[28,60,851.

The integral equation formulation for electromagnetic scattering from a target

(Huygens' Principle) is exact. The MOM reduces these integro-differential equations

to a matrix equation by dividing the target surface into subdomains. The matrix

equation represents each subdomain's interaction with every other subdomain. The

solution (surface currents and charges) can be found by inverting the interaction matrix

and multiplying it by the column vector that is related to the incident field at each

surface element. The scattered field is then computed by summing the surface current

and charge distributions in a radiation integral. Typically, the integral is for the far-
field scattering (RCS), but the field at an arbitrary point in space can be calculated

(electromagnetic compatability, near-field RCS, etc.). This feature makes the MOM a

very powerful tool with which to conduct detailed investigations of scattering behavior,

and the MOM can provide insights into the most critical target element interactions

that should be accounted for in the high frequency techniques discussed previously.

* i -- .~. -. .. ..~
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2.2 Variations and Alternatives

Several variations and alternatives in the MOM are apparent in the literature.

Various approaches to surface modeling of the target have been suggested (99-110],

and each has applications to recommend its use. Two of the more popular methods of

surface modeling are the wire grid [82,100,103] and the surface patch [81] models. The

target is represented as a mesh of wire grids or a patchwork quilt of surface patches.

Their popularity stems from the complexity of the targets that can be constructed

from these subdomains. If the MOM is applied to the expression for the electric field

in Huygens' principle, the method is known as the electric field integral equation (EFIE)

formulation. If the MOM is applied to the corresponding magnetic field expression in

Huygens' principle, the method is called the magnetic field integral equation (MFIE)

formulation. The EFIE formulation [69-73,75,76,78,81,88] can be used for open and

closed surfaces. The MFIE formulation [69-73,75,76,78,81,88] can be used only for

closed surfaces. However, the EFIE and MFIE will give erroneous resilts near the

internal resonance frequency of a closed structure using the MOM [69-73,81,88]. The

combined field integral equation (CFIE) [69-73,75,76,78,81,88] is a linear combination

of the EFIE and MFIE which gives valid results near the internal resonance frequency

[19,58,671. Another variation in the MOM is the merger of the MOM with GTD and

PTD high frequency techniques, as described in the previous chapter [75,76,89-98].

To predict the electromagnetic scattering from treated perfectly conducting tar-

gets the approximate boundary condition (ABC) approach has been developed for use

with the MOM. A coated target is one which has a dielectric/magnetic coating. Spe-

cific research areas within the ABC numerical theory are the impedance boundary

condition (IBC) [111,115,117-122], the resistive boundary condition (RBC) [120-123],

and its analog the magnetic boundary condition (MBC) [117-1221. In each of these

approaches the coating is approximated by modeling the perfect conductor as an equiv-

alent impedance/resistance.
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2.3 Coated Target With Arbitrary Geometry

This thesis is an application of the MOM numerical technique to a coated target

with arbitrary geometry as defined in Chapter 1. Rao, Wilton, and Glisson [81] have

used this approach for perfectly conducting targets with arbitrary geometries. They

used triangular patches to construct arbitrary targets. They then defined a set of

basis functions [64,811 which, when combined with triangular patch modelling, greatly

simplify the equations for the electric surface currents.

Medgyesi-Mitschang, et al [71,73] have applied the MOM to coated perfectly

conducting and penetrable targets. However, the targets must be bodies of revolu-

tion (BOR) and cannot have arbitrary geometries. Using only BORs provides a great

simplification in the equations and computations for the surface currents due to the

symmetry of the target.

Applying the MOM to a three-dimensional coated target will produce three

times the number of unknowns to be calculated as compared to a perfectly conducting

target. For a perfectly conducting target the electric surface current density is required

to calculate the electromagnetic scattering. In the MOM, this electric surface cur-

rent density is represented by the n basis functions over the n subdomains (triangular

patches). For a coated target (perfect conductor) the electric and magnetic surface cur-

rent densities over the outermost surface are required to calculate the electromagnetic

scattering. To calculate these current densities, the electric surface current density

on the perfect conductor is also required (magnetic current density equals zero on the

perfect conductor). In the MOM, each of these three current densities is represented by

n basis functions over the subdomains. Thus, there will be three times the number of

unknowns to be calculated as compared to a perfectly conducting target. This increase

in the number of unknowns inherently reduces the upper frequency or size of target
for which the electromagnetic scattering can be calculated (as compared to a perfectly

conducting target) due to the computer limitations discussed previously.
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Chapter 3

PROBLEM FORMULATION AND METHOD OF SOLUTION

3.1 Introduction

This thesis problem involves calculating the electromagnetic scattering (radar

cross section) from a coated perfect conductor with arbitrary geometry. Figure 3.1

illustrates the problem. An assumed plane wave is incident on the target. Equiva-

lent electric and magnetic surface currents (J1 and M1 , respectively, in Figure 3.1) on
the outer surface of the target are calculated using the method of moments. These

calculated equivalent surface currents are then used to compute the scattered electro-

magnetic field and, ultimately, the monostatic radar cross section (RCS) of the coated

target. Figures 3.1 and 3.2 illustrate the problem for a completely coated perfect con-

ductor, and Figure 3.3 is an illustration of the problem for a partially coated perfect

conductor. For the partially coated perfect conductor, equivalent electric and magnetic

surface currents (J1 and M1 , respectively, in Figure 3.3) on the outer surface of the

coating and an equivalent electric surface current (J2 in Figure 3.3) on the outer surface

of the exposed perfect conductor are calculated using the method of moments. Again,

these calculated equivalent surface currents are then used to compute the monostatic

RCS of the partially coated target. A detailed derivation of the governing equations

for both of these cases is provided in Appendix A.

Throughout this thesis only the monostatic RCS will be computed and discussed.

However, the bistatic RCS could have been calculated just as readily. One of the

elegances of the method of moments lies in the fact that once the equivalent electric and

magnetic surface currents have been calculated, all desired electromagnetic scattering

phenomena can be computed. This includes near-field as well as far-field scattering.

For the completely coated perfect conductor shown in Figure 3.1, the target con-
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sists of an inner core and an outer core, each of which can be of arbitrary geometrical

shape. The inner core of the target is assumed to be a perfectly conducting surface.

Surrounding this inner core is a coating which completely encloses the perfect conduc-

tor. The coating can have a complex permittivity, E, and/or a complex permeability,

p. The complex permittivity and permeability correspond to dielectric and magnetic

materials, respectively, with loss.

For the partially coated perfect conductor shown in Figure 3.3, the target con-

sists of a perfectly conducting object of arbitrary geometrical shape which is partially

coated by a material of arbitrary geometrical shape. Again, this material can have a

complex permittivlty, E, and/or a complex permeability, A.

The remaining sections of this chapter discuss in greater detail the formulation of

the problem and the method chosen to calculate the RCS for coated perfect conductors

with arbitrary geometries.

3.2 The Approach

The approach to the solution of this problem is one of using the equivalence

principle to replace the target with an equivalent set of electric and magnetic surface

currents. The equivalent problem to the target illustrated in Figure 3.1 is shown in

* Figure 3.2. The region inside the coating is replaced with the equivalent electric surface

current, J1 , and the equivalent magnetic surface current, M 1, as shown in the left half

of Figure 3.2. The electric and magnetic fields inside the coating are now in the region

of no interest and are, therefore, assumed to be identically zero. Since the fields in the
region of no interest are zero, the permittivity and permeability are assumed to be that

of the surrounding free space, which results in an homogeneous, unbounded medium.

The right half of Figure 3.2 demonstrates the remainder of the equivalence prin-

ciple. The region outside the coating is replaced by the equivalent electric surface

current, J, and the equivalent magnetic surface current, M'. The perfect conductor is

replaced by an equivalent electric surface current, J2. No equivalent magnetic surface

current is required at the surface of the perfect conductor since the boundary condi-

-5, .. t
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tion at the surface of the perfect conductor requires the tangential electric field, and

hence the equivalent magnetic surface current, to equal zero. Now the region of no

interest becomes the volume outside the surface of the coating and inside the surface

of the perfect conductor. As before, the electric and magnetic fields in the region of

no interest are assumed to be zero, and, therefore, the permittivity and permeability

of the region of no interest are assumed to be that of the coating. This again results

in an unbounded homogeneous medium.

The next step is to satisfy the boundary conditions. At the surface of the

coating, the tangential electric field is continuous and the tangential magnetic field is

continuous. At the surface of the perfect conductor, the tangential electric field is zero

and the tangential magnetic field is equal to the induced electric surface current, J2.

Now, the total fields outside the coating equal the incident fields plus the scattered

fields. The scattered fields can be expressed in terms of J, and M, using Huygens'

principle [128]:

W(= is, dS'{iW.UG(,). [x +V x [(, '). [) x (G ) } (3.1)

and

is(,)= f dS'{-iwE=(F, f') . [i x + V x =(F, ).[x 7(f')I} (3.2)

where [i x H(r')] - and [4 x E(')j = -M. The above expressions are the dyadic

formulation of Huygens' principle, and G is the dyadic Green's function which is defined

in Appendix A. S' is the surface of the scatterer. Further, the fields inside the coating

can be expressed in terms of J', Ml, and J2 using Huygens' principle. Satisfying

the boundary conditions yields a set of integro-differential equations (see Appendix

A) in terms of the incident electric and magnetic fields and the unknown electric and

magnetic surface currents.

The method of moments is now applied to the set of integro-differential equations

which express the boundary conditions. This results in a matrix equation of the form

.. , - . ' .' * ........... ." " '.. .. .. . ... ' ,. ..- .
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V = . I. For more detail, see Appendix A. V represents the incident electric and

magnetic field excitation vector at the boundary surfaces. 7 represents the unknown

electric and magnetic surface current coefficients. Z represents the interaction matrix

for all the triangular patches used to model the surfaces (see Section 3.3). The unknown

surface current coefficients, 7, can now be obtained by inverting the Z-matrix and

multiplying the excitation vector, V, by this inverted Z-matrix, Z : I = Z • V.

Once the unknown surface current coefficients are computed, it is desired to

compute the scattered electric field, E, and, ultimately, the monostatic RCS, o. The

surface current coefficients are used with the appropriate basis functions and substi-

tuted into Huygens' principle to compute the scattered electric field. For the completely

coated perfect conductor, only the surface current coefficients for the coating are re-

quired to compute the scattered electric field. The target has now been replaced with

an equivalent set of electric and magnetic surface currents as shown in the left side of

Figure 3.2. The far-field approximation to Huygens' principle is made:

=iwUi{(Rie + R 2 0) + (R1 # - R20)} (3.3)

where

eikor dS' J1(f)e -F ° ' (3.4)

and

eikor

IAO 47rr j S,

in the radiation zone. After the scattered electric field is computed in the backscatter

direction, the monostatic RCS, o, is calculated using the following formula:

2

a = lim 4rr2 =-- (3.6)r.--oo E n

Finally, the monostatic RCS in decibels referenced to 1 square meter (dBsm) is com-

puted as
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CdBsm= 101iogi0(y1--M) (3.7)

To handle the case of a partially coated perfect conductor, the only modification

to the approach outlined above which is required is to replace the target with three

equivalent surface currents instead of the two used previously. The coated portion of the

target is replaced with an equivalent set of electric and magnetic surface currents, (JI

and MI, respectively, over surface S in Figure 3.3), and the exposed perfect conductor

is replaced with an equivalent electric surface current, (J2 over surface S2 in Figure

3.3). The scattered field then becomes

E,(f) = iio{0(R3e + R4 i) + q(RIO - R4e)} (3.8)

where

-73 -- ikr dS' 7l(?J)e-°- + dS' J 2 (e)e - iko to (3.9)

and

1104 0-- fo i~4r dS' V , (F')e - °'  (3.10)

in the radiation zone. The monostatic RCS is then computed using equations (3.6) and

(3.7), as before.

3.3 Surface Modeling

To model the arbitrary geometry of the surfaces of the coating and perfect con-

ductor, the triangular patch model of Rao, Wilton, and Glisson [81] is used. The

motivation and justification for this triangular patch model is provided in Reference

[81]. For the purposes of this thesis, the motivation for using triangular patch mod-

eling is that almost any arbitrary geometry (singly and doubly-curved surfaces) can

be modelled using triangular subdomains. Figure 3.4 displays a cylinder modelled us-

ing triangular subdomains. Further, various coatings or an homogenous coating with

"d
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variable thickness over the surface of the perfect conductor can be modelled with the

appropriate triangularly patched surfaces. Thus, this triangular patch modelling in

conjunction with the basis function over the bi-triangular subdomain used by Rao,

Wilton, and Glisson [811, the method of moments, the equivalence principle, Huy-

gens' principle, and the appropriate boundary conditions permit the RCS prediction

for coated perfect conductors with arbitrary geometries. The bi-triangular subdomain

of the basis function is shown in Figure 3.5, and more detail on the basis function is

contained in Appendix A.

3.4 Computer Programs

A flowchart of the computer programs written to implement the procedures

described in Section 3.2 is presented in Appendix B. It is not a flowchart of the individ-

ual computer programs, but a flowchart to show the progression through the electric

field integral equation (EFIE) series of computer programs used to calculate the de-.

sired far-field RCS patterns. Appendix B also contains a brief description of the EFIE

programs.

Program EFIE1 translates condensed, user-supplied geometry specifications into

EFIE usable data. This program automatically breaks the described surface into trian-

gular patches (see Figure 3.4) and does the bookkeeping for such items as coordinates

0of nodes, which nodes form which edges, which edges form which triangular faces, etc.
All of this information is then placed into the output file labelled STORAGE.DAT.

The EFIE series of computer programs assume an excitation frequency of 300 mega-

hertz, which gives a free space wavelength of one meter. Thus, all target geometry

specifications are normalized to wavelength.
Program EFIE2C calculates the symmetric Z-matrix for the completely coated

perfect conductor. The inputs to this program are the STORAGE.DAT file generated

by EFIEI for the perfect conductor, and the CSTORAGE.DAT file (renamed from

STORAGE.DAT) generated by EFIE1 for the coating. The output of EFIE2C is a

____ file labelled RESMAT.DAT which contains the Z-matrix. This Z-matrix is discussed
A.* ,
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in detail in Appendix A. Since the Z-matrix is symmetric and, therefore, equal to its

transpose, only half the Z-matrix is stored in RESMAT.DAT.

Program EFIE2PC calculates the symmetric Z-matrix for the partially coated

perfect conductor. The inputs to this program are the STORAGE.DAT file generated

by EFIE1 for the coated portion of the perfect conductor, the KSTORAGE.DAT file

(renamed from STORAGE.DAT) generated by EFIE1 for the exposed portion of the
perfect conductor, and the CSTORAGE.DAT file (renamed from STORAGE.DAT)

generated by EFIE1 for the coating. The output of EFIE2C is a file labelled RES-

MAT.DAT which contains the Z-matrix. This Z-matrix is discussed in detail in Ap-

pendix A. Since the Z-matrix is symmetric and, therefore, equal to its transpose, only

half the Z-matrix is stored in RESMAT.DAT.

Program EFIE3 inverts the symmetric Z-matrix stored in RESMAT.DAT. The

Z-matrix is inverted by the technique of border inversion. The input to EFIE3 is the

RESMAT.DAT file. The output of EFIE3 is the inverted Z-matrix, Z , which is

placed into the RESMAT.DAT file.

Program EFIE5BC computes the scattered electromagnetic field, E8 , far-field

radiation pattern from the equivalent electric, J1, and magnetic, M1 , surface current

distributions of the completely coated perfect conductor. A plane wave is assumed

to excite the target, and the equivalent surface currents are computed by multiplying

the excitation vector by the inverted Z-matrix. Then, the scattered electric field is

calculated only in the backscatter direction for the desired, user-specified angles us-

ing equations 3.3 through 3.5. The inputs to EFIE5BC are the inverted Z-matrix,

RESMAT.DAT, and the coating geometry data, CSTORAGE.DAT. The output file,

SPATTERN.DAT, contains the far-field radiation pattern versus the desired angles.

Program EFIE5PC computes the scattered electromagnetic field, E,, far-field

radiation pattern from the equivalent electric, J1 and J 2 , and magnetic, I, surface

current distributions of the partially coated perfect conductor. A plane wave is assumed

to excite the target, and the equivalent surface currents are computed by multiplying

the excitation vector by the inverted Z-matrix. Then, the scattered electric field is

calculated only in the backscatter direction for the desired, user-specified angles us-

"' ' " " ". -. - ". "-, " "- - , . . ' . .
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ing equations 3.8 through 3.10. The inputs to EFIE5PC are the inverted Z-matrix,

RESMAT.DAT, the coating geometry data, CSTORAGE.DAT, and the exposed per-

fect conductor geometry data, KSTORAGE.DAT. The output file, SPATTERN.DAT,

contains the far-field radiation pattern versus the desired angles.

Program EFIE5R calculates the far-field RCS pattern from the scattered electric

field pattern. Equations 3.6 and 3.7 are used to compute the monostatic RCS, o, for

each user-specified angle. The input to EFIE5R is the file RPATTERN.DAT (renamed

from SPATTERN.DAT). This program is interactive, and the output is available in a

variety of forms. The RCS plots versus desired angle can be displayed on a graphics

*. terminal or written into the file HDCOPY.PLT for printing. Further, the file DPAT-

* TERN.DAT is created which contains the RCS data versus angle.

Program EFIE5V presents the geometry information in user viewable form. This

is an interactive program which will display the geometry created on a graphics terminal

or write geometry information into the file HDCOPY.PLT for printing. The input is a

file called RESULT.DAT (renamed or copied STORAGE.DAT, KSTORAGE.DAT, or

CSTORAGE.DAT file). Figure 3.4 was generated using this program.

The author wrote the EFIE2C and EFIE2PC programs described above, and

modified EFIE5B (provided by Group 44 at MIT Lincoln Laboratory) to produce the

EFIE5BC and EFIE5PC programs. Additionally, the author modified versions of the

EF E5R and EFIE5V programs to produce the outputs described. The remainder

of the programs were generously provided for the author's use by the MIT Lincoln

Laboratory.

3.5 Numerical Integration Over Triangular Subdomains

To calculate the elements of the interaction matrix, Z, an integration of sev-

eral types of functions over each triangular patch is required as shown in Appendix A,

equations A.106 through A.114 and A.201 through A.216. Since the basis functions

used only exist over the bi-triangular subdomains, the integration of these functions is

performed over each subdomain. The integration of these functions over the triangular
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patches is accomplished numerically using a quadrature technique for surface integra-

tion over a triangular surface. Three types of numerical integrations are required:

fI., eikoRi

dT4 4 rRn (3.11)

and

eikoR*IT, (3.12)

and

.e eikoR(

Rm)(3.13)

Appendix C discusses the seven-point numerical integrations used to compute

the integrals shown in 3.11, 3.12, and 3.13. Each of these integrals has a singular-

ity which must be considered when the source triangle and the observation trian-
gle are the same triangular patch, m = n. The integration of fTZ d" v, " and

fTZ dfr R are accomplished in subroutine NINT7 of FORTRAN program EFIE2PC

listed in Appendix D, and the integration of fT l d'" 6 k and fTZ dfeik, R; are

accomplished in subroutine NINT7A of EFIE2PC. The seven-point numerical inte-

gration scheme used is discussed in Chapter 3 of Kiang's thesis [124], and will not

be repeated here. Further, Kiang's thesis discusses the effects of various triangular

patch shapes on the computation of the scattering from perfect conductors. The

integration of fT * df' x (f 7)(1 ikoR ias- n is accomplished in subrou-
tine NINT7B of FORTRAN program EFIE2PC (Appendix D), and the integration
of ×7Zdl±X( l( k ,n ia

o- -t)(i -TR- is accomplished in subroutine NINT7C

of EFIE2PC. The seven-point numerical integration over the triangular patches is an

adaptation of the numerical quadrature technique discussed in reference 1125]. The

values used in the quadrature integration can also be found in Abramowitz and Stegun

[1261 on page 893.
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Figure 3.4. Triangular Patch Model Of Cylinder
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Chapter 4

EXPERIMENT

4.1 Introduction

Experimental data were collected at the MIT Lincoln Laboratory Group 95

Radar Cross Section (RCS) Measurement Facility. RCS data were collected from square

aluminum plates, some coated with radar absorbing material and some without. Sec-

tion 4.2 presents a brief description of the RCS Measurement Facility, and section 4.3

describes the data which were collected.

4.2 Radar Cross Section Measurement Facility

A block diagram of the MIT Lincoln Laboratory Group 95 RCS Measurement

Facility apparatus used to collect the RCS data presented in this thesis is shown in

Figure 4.1. The operating frequency of this radar is approximately 2.5 gigahertz (GHz)

to 8.0 GHz. As shown in the block diagram, this is a pulsed radar system. The

transmitted pulse is approximately 20 nanoseconds in duration, and the received pulse

is approximately 40 nanoseconds in duration. The pulse repetition frequency of the

radar is seven megahertz. The received pulses are averaged for 40 milliseconds. The

quoted noise threshold for this radar is -60dBsm.

A block diagram of the RCS data collectiu-a process is shown in Figure 4.2. A

styrofoam mount is used to hold the target in the desired position. With the styro-

foam mount in position and no target on the mount, a background measurement is

performed. The styrofoam mount can be rotated azimuthally 360 degrees in one-half

degree increments, if desired. An RCS measurement of the background is taken at the

desired angle increments. This background measurement is subtracted from all succes-
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sive measurements to arrive at the measured RCS of the target. Next, a calibration

sphere is placed on the styrofoam mount. RCS measurements are performed at the de-

sired angle increments to verify the calibration of the radar system. Now, the desired

target is placed into the radar chamber. It is positioned on the styrofoam mount so

the desired cut will be obtained as the styrofoam mount is rotated azimuthally. Again,

RCS measurements are taken at the desired angle increments. Finally, the calibration

process is repeated to verify the radar system performance.

4.3 Data Collection

As mentioned in the introduction, RCS data were collected from square alu-

minum plates, some coated with radar absorbing material and some without. Those

plates coated with radar absorbing material were only coated on one side (partially

coated perfect conductors). The plates were mounted on styrofoam. The styrofoam

mount was then rotated azimuthally 360 degrees in one degree increments, and the RCS

measurements were obtained at each of these angles. Table 4.1 lists the data collected,

and the RCS plots corresponding to this table can be found in Appendix E.

RCS data were collected from square aluminum plates which were 32 mils (0.032

inches = 0.8128 mm) thick. See Table 4.1. Two sizes of aluminum plates were used.

The first size was 10 cm by 10 cm which is one wavelength by one wavelength at

a frequency of 3.0 GHz. The second size plate was 15 cm by 15 cm which is three

wavelengths by three wavelengths at 6.0 GHz. RCS data were collected at 3.0 GHz

and at 6.0 GHz. Two different polarizations of RCS data are shown in Table 4.1

and Appendix E: horizontally transmitted and horizontally received RCS data; and

vertically transmitted and vertically received RCS data. The horizontally transmitted

and horizontally received RCS data corresponds to the VV entries in Table 4.1 and the

SIGMA-VV versus angle RCS plots in Appendix E. This is because the aluminum plate

was chosen as the reference, and the aluminum plate was mounted in a vertical position

on the styrofoam mount. The styrofoam mount was then rotated azimuthally for the

RCS measurements. Therefore, VV corresponds to a vertically polarized electric field
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for the incident wave and a vertically polarized electric field for the scattered wave with

respect to the edge of the plate. Similarly, the vertically transmitted and vertically

received RCS data corresponds to the HH entries in Table 4.1 and the SIGMA-HH

versus angle RCS plots in Appendix E. Therefore, HH corresponds to a horizontally

polarized electric field for the incident wave and a horizontally polarized electric field for

the scattered wave with respect to the edge of the plate. There is no cross-polarization

return for the RCS pattern cuts measured due to symmetry.

Three different radar absorbing materials were used to coat the square aluminum

plates: Eccosorb FDS, Eccosorb SF 6.0, and Eccosorb FGM 40 (Eccosorb is a registered

trademark of the Emerson and Cuming Division of the W. R. Grace and Co.). The

three types of coating, along with some of the specifications for each as provided by the

manufacturer, are shown in Table 4.2. Eccosorb FDS is a silicone rubber based material

which was purchased in one foot by one foot sheets. More information on Eccosorb

FDS may be found in Table 4.3 and Technical Bulletin 2-22A and Folder 819-91 from

the manufacturer. The information in Table 4.3 was taken from this technical bulletin.

Eccosorb SF 6.0 is also a silicone rubber based material which was also purchased in one

foot by one foot sheets. It is cut for a resonance frequency of 6.0 GHz. More information

on Eccosorb SF 6.0 may be found in Technical Bulletin 8-2-18 from the manufacturer.

Finally, Eccosorb FGM 40 is a ferrite loaded silicone based rubber material which

was purchased in one foot by one foot sheets. More information on Eccosorb FGM

40 may be found in Technical Bulletin 8-2-23 from the manufacturer. Specifications

comparable to those listed in Table 4.3 for Eccosorb FDS were not available in the

respective technical bulletins for Eccosorb SF 6.0 and Eccosorb FGM 40.
The radar absorbing materials used were chosen for the frequency at which the

RCS data were collected. Since the method of moments is a relatively low frequency

technique (dimensions of the object relatively small or comparable to the wavelength

of interest), a compromise was made between the size of the aluminum plates used, the

frequency of the RCS measurements, and the type of radar absorbing materials used

to coat the aluminum plates. Table 4.1 represents the results of the compromise.
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Coatings used were Eccosorb radar absorbing material

Square plate targets were mounted on styrofoam

f = radar frequency in gigahertz (GHz)

RCS measurements taken in V° increments

Radar pulses averaged for 40 milliseconds

Radar pulse repetition frequency (PRF) = 7 megahertz

Radar pulse width: XMIT-20 nanoseconds, RCVR-40 nanoseconds

Plate Size Coating f (GHz) Polarization

10cm X 10cm None 3.0 hh

10cm x 10cm None 3.0 vv

10cm x 10cm FDS 3.0 hh

10cm x 10cm FDS 3.0 w

10cm X 10cm SF 6.0 3.0 hh

10cm X 10cm SF 6.0 3.0 vv

10cm X 10cm FGM 40 3.0 hh

10cm x 10cm FGM 40 3.0 vv
15cm x 15cm None 3.0 hh

15cm x 15cm None 3.0 vv

15cm x 15cm FDS 3.0 hh

15cm x 15cm FDS 3.0 vv

15cm x 15cm SF 6.0 3.0 hh

15cm x 15cm SF 6.0 3.0 vv

15cm x 15cm FGM 40 3.0 hh

15cm x 15cm FGM 40 3.0 vv

Table 4.1. Experimental Radar Cross Section Measurements
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Coatings used were Eccosorb radar absorbing material

Square plate targets were mounted on styrofoam

f = radar frequency in gigahertz (GHz)

RCS measurements taken in 10 increments

Radar pulses averaged for 40 milliseconds

Radar pulse repetition frequency (PRF) = 7 megahertz

Radar pulse width: XMIT-20 nanoseconds, RCVR-40 nanoseconds

Plate Size Coating f (GHz) Polarization

10cm X 10cm None 6.0 hh

10cm X 10cm None 6.0 vv

10cm X 10cm FDS 6.0 hh

10cm X 10cm FDS 6.0 vv

10cm x 10cm SF 6.0 6.0 hh

10cm x 10cm SF 6.0 6.0 vv

10cm X 10cm FGM 40 6.0 hh

10cm X 10cm FGM 40 6.0 vv

15cm X 15cm None 6.0 hh

15cm x 15cm None 6.0 vv

15cm x 15cm FDS 6.0 hh

15cm X 15cm FDS 6.0 vv

15cm X 15cm SF 6.0 6.0 hh

15cm X 15cm SF 6.0 6.0 vv

15cm X 15cm FGM 40 6.0 hh

15cm x 15cm FGM 40 6.0 vv

Table 4.1 (cont.). Experimental Radar Cross Section Measurements
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Eccosorb radar absorbing material purchased from W. R. Grace Co.

Specifications quoted from literature supplied by manufacturer

A = thickness in millimeters

Weight is in (kg/m 2)

Loss = dB/cm at normal incidence (0ic = 00 )

Oinc = 00 f = 3.0 GHz

Eccosorb A (mm) Color Weight Loss (dB/cm)

FDS 0.762 Black 2.0 -8.6

SF 6.0 2.1844 Gray 7.8 -5.0

FGM 40 1.016 Gray 4.9 -5.0

Table 4.2. Eccosorb Radar Absorbing Material Specifications

Dielectric Properties f = 1.2 GHz f = 3.0 GHz f = 8.6 GHz

Dielectric Constant 13 8.9 7.4

Dielectric Loss Tangent 0.15 0.07 0.15

Magnetic Permeability 2.3 1.7 1.4

Magnetic Loss Tangent 0.41 0.80 0.48

Attenuation (dB/cm) 3 9 16

Relative Impedance Z/ZO 0.4 0.5 0.5

Table 4.3. Eccosorb FDS Manufacturer Specifications
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Chapter 5

EXPERIMENTAL AND THEORETICAL RESULTS

5.1 Introduction

This chapter contains a discussion of the radar cross section (RCS) data gen-
erated at the MIT Lincoln Laboratory Group 95 RCS Measurement Facility and by

the EFIE series of computer programs. Section 5.2 describes the experimental RCS

data collected at the MIT Lincoln Laboratory Group 95 RCS Measurement Facility

as discussed in Chapter 4. Section 5.3 describes the theoretical RCS data generated

by the EFIE series of computer programs discussed in Chapter 3. Finally, section 5.4

contains a comparison of the experimental results and the theoretical results. All the

RCS plots contained in this thesis are for either partially coated or uncoated square

aluminum plates. Appendix E contains copies of all the RCS plots discussed in this

thesis.

5.2 Experimental Radar Cross Section Data

The experimental RCS measurements taken at the MIT Lincoln Laboratory

Group 95 RCS Measurement Facility are discussed in Chapter 4. Table 4.1 in Chapter

4 provides a list of the RCS measurements taken, and Appendix E contains copies

of each of the RCS plots generated from the measured data. Table 5.1 summarizes

these experimental RCS plots. As discussed in Chapter 4, the RCS measurements

were all performed on square aluminum plates. Some of the RCS measurements were

taken on uncoated plates, and some of the RCS measurements were taken on plates

which were coated on only one side with an appropriate layer of the Eccosorb radar

absorbing material corresponding to the entries in Table 4.1. The RCS was measured

5, " -" " " " , " - " -' " "" "'" °' "" " "" ° o """' -' . ." " . '"o , . . " . "" "" . . "/. ' . " ° . ' , "- " - . ' "
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360 degrees around each plate at one degree increments. As mentioned in Chapter 4,

the aluminum plates were mounted vertically on a styrofoam mount which was then

rotated azimuthally in one degree increments for the RCS measurements.

Figures E.1 through E.16 in Appendix E are the experimental RCS plots corre-

sponding to the entries in Table 4.1. These plots are summarized in Table 5.1. Two

orthogonal polarizations are displayed in the same figure. The ahh polarization is on

the top of each figure, and the a,,, polarization is on the bottom of each figure. These

polarizations are explained in the next paragraph. Table 5.1 also lists the value of

the RCS at normal incidence to the coated side of the plate (0 = 00) for the Ohh

polarization.

All the experimental RCS plots in Appendix E display the RCS in decibels

referenced to one square meter (dBsm) on the Y-axis versus angle on the X-axis. The

frequency of the RCS measurement is also annotated along the Y-axis of each RCS

plot. The O'hh versus angle RCS plots in Appendix E correspond to a horizontally

polarized electric field for the incident wave and a horizontally polarized electric field

for the scattered wave with respect to the edge of the plate. Similarly, the o,, versus
angle RCS plots in Appendix E correspond to a vertically polarized electric field for

the incident wave and a vertically polarized electric field for the scattered wave with

respect to the edge of the plate. The angle measurement on the X-axis is in degrees.

The angle displayed on the X-axis in the RCS plots of Appendix E is theta (0)

in the spherical coordinate system. This follows naturally since the aluminum plates

were mounted vertically on the styrofoam mount which was then rotated azimuthally.

If the plane of the plate is considered the X-Y plane, then the normal to this plane is

the Z-axis. Theta (0) in the spherical coordinate system is measured with respect to

the Z-axis. Thus, the amount of rotation of the styrofoam mount corresponds to the
*1

angle 0 in spherical coordinates. Assuming the edges of the plate are parallel to the

imaginary X-axis and Y-axis, the cut obtained is for 0 = 00 as the mount rotates. If

the plate is coated on one side, the angle 8 = 00 on the RCS plot corresponds to normal

incidence on the side of the plate with the coating. The angles 0 = ±180' on the RCS

plot correspond to normal incidence on the uncoated side of the plate.
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To determine how much the Eccosorb radar absorbing material has decreased

the RCS at normal incidence, compare the ahh entry in Table 5.1 for the plate with

no coating to the corresponding entry for the plate with the coating of interest. For

example, Table 5.1 shows the 0 hh for the 10cm by 10cm uncoated plate at 3.0 GHz is

-9.7 dBsm, the first entry in Table 5.1. Compare this to the ahh value of -13.3 dBsm

for the FGM 40 coated square aluminum plate at 3.0 GHz, the fourth entry in Table

5.1. The Eccosorb FGM 40 radar absorbing material decreased the RCS at normal

incidence by -3.6 dB at 3.0 GHz for the 7 hh polarization.

For the three different types of Eccosorb radar absorbing material measured,

Table 5.1 shows the Eccosorb FGM 40 provided the largest RCS reduction at normal

incidence to the square aluminum plate at a frequency of 3.0 GHz for the ahh polariza-

tion. This is not true at a radar frequency of 6.0 GHz. The Eccosorb SF 6.0 provides

the largest RCS reduction at normal incidence to the plate at 6.0 GHz. The Eccosorb

SF 6.0 is tuned to a resonance frequency of 6.0 GHz, and it would be expected to pro-

vide the largest RCS reduction at normal incidence at this frequency if the properties

of the radar absorbing materials are comparable. Table 5.1 further shows the Eccosorb

FDS provided the smallest RCS reduction of all three radar absorbing materials at

normal incidence to the plate at 3.0 GHz and 6.0 GHz for the ahh polarization. This

reduction was approximately -1 dB for both plate sizes and both frequencies listed in

Table 5.1. This is consistent with the manufacturer's claim that Eccosorb FDS was

more effective for surface wave effects than for specular reduction.

By overlaying enlarged versions of Figures E.2, E.6, E.10, and E.14 onto Figures

E.1, E.5, E.9, and E.13, respectively, the radar absorbing properties of the Eccosorb

FDS material become more apparent. This technique was used to generate Figures

5.1 and 5.2. Figure 5.1 is a composite of the ahh curves of Figures E.1 and E.2, and

Figure 5.2 is a composite of the a curves of Figures E.9 and E.10. Figures 5.1 and

5.2 show that indeed the Eccosorb FDS radar absorbing material is more effective for

surface wave effects than for specular reduction. For example, this phenomenom is

demonstrated by the fact that for the angles between 00 and ±90', not inclusive, on

Figures 5.1, 5.2, E.2, E.6, E.10, and E.14 the amount of RCS reduction is greater than
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the RCS reduction at 00 on these figures. Again, the RCS reduction is determined by

comparison with the appropriate uncoated case.

At the angles near ±90° for the ahh plots in all the figures for the coated

plates, the RCS is actually larger than the RCS for the corresponding uncoated plates

at the same angles. Figures 5.1 and 5.2 explicitly display this phenomenom. The

finite thickness of the coating and the reflection coefficient of the coating might be

contributing factors to this effect. For these specific angles, the RCS measurements

are being made at the edges of the plates. Since the edges of the coated plates are not

covered with radar absorbing material, the exposed edges of the coated plates reflect

radar energy in the same manner as the edges of the uncoated plates. However, there

is the additional reflection of radar energy from the coating/free space interface due

to the impedance mismatch at this boundary. This may account for the increase in

RCS at these angles for the coated plates compared to the RCS at these angles for the

uncoated plates.

At the angles near ±900 for the a,, plots in all the figures for the coated plates,

the null in the RCS plot is shifted several degrees from the null in the RCS plot for

the the corresponding uncoated plates at the same angles. The finite thickness of the

coating and the reflection coefficient of the coating might also be contributing factors

to this effect. For these specific angles, the RCS measurements are being made at the

edges of the plates. Since the coating has a finite thickness at the edges, the edges of the

coated plates reflect more radar energy than the edges of the uncoated plates. Further,

the reflection coefficient of the coating varies with the angle. This may account for the

shift in the null of the RCS plot at these angles for the coated plates compared to the

null in the RCS plot at these angles for the uncoated plates.

5.3 Theoretical Radar Cross Section Data

The theoretical RCS data. were generated by the EFIE series of FORTRAN

computer programs. The EFIE series of computer programs are discussed in Chapter

3. Table 5.2 provides a list of the RCS data computed by this series of programs, and
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Appendix E contains copies of each of the RCS plots generated from this computed

data. The RCS data were all computed for square perfectly conducting plates. The size

of the perfectly conducting plates was 10cm by 10cm for all the computations, and the

frequency was always 3.0 GHz. The perfectly conducting plates were coated on only

one side with a coating which had the complex relative permittivity (eR) and complex

relative permeability (AR) of interest. The RCS was computed 360 degrees around

each plate at 109 equally spaced points. Since the method of moments is a relatively

low frequency technique (dimensions of the object relatively small with respect to the

wavelength of interest), a compromise was made between the size of the plate used,

the frequency of the RCS calculations, the magnetic disk storage requirements for the

Z-matrix, and the computation time required for the VAX 11/750 to calculate the RCS

data. Table 5.2 represents the results of the compromise.

Figures E.17 through E.28 in Appendix E are the theoretical RCS plots gen-

erated by the EFIE series of FORTRAN computer programs. These RCS plots are

summarized in Table 5.2. Two orthogonal polarizations are displayed in the same fig-

ure. The ahh polarization is on the top of each figure, and the a, polarization is on

the bottom of each figure. These polarizations are explained in the next paragraph.

Table 5.2 also lists the computed value of the RCS at normal incidence to the coated

side of the plate (0 = 00) for the Uhh polarization.

All the theoretical RCS plots in Appendix E display the RCS in decibels ref-

erenced to one square meter (dBsm) on the Y-axis versus angle on the X-axis. The

frequency of the RCS calculation is also annotated along the Y-axis of each RCS plot.

The 'hh versus angle RCS plots in Appendix E correspond to a horizontally polarized

electric field for the incident wave and a horizontally polarized electric field for the scat-

tered wave with respect to the edge of the plate. Similarly, the ,, versus angle RCS

plots in Appendix E correspond to a vertically polarized electric field for the incident

wave and a vertically polarized electric field for the scattered wave with respect to the

edge of the plate. The angle measurement on the X-axis is in degrees.

The angle displayed on the X-axis in the RCS plots of Appendix E is theta

(0) in the spherical coordinate system. If the plane of the plate is considered the X-Y

'p
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plane, then the normal to this plane is the Z-axis. Theta (0) in the spherical coordinate

system is measured with respect to the Z-axis. Assuming the edges of the plate are

parallel to the X-axis and Y-axis, the cut obtained is for 0 = 0* as 0 varies. The plate

*is coated on only one side, and the angle 0 = 0' on the RCS plot corresponds to normal

incidence on the side of the plate with the coating. The angles 0 = ±180' on the RCS

plot correspond to normal incidence on the uncoated side of the plate.

There are several issues involved in the computation of the RCS data using the

EFIE series of computer programs. The first issue is modelling of the partially coated

perfect conductor. The second issue is the continuity of surface current between the

boundary of the exposed perfect conductor and the coated perfect conductor.

The question of how to model the partially coated perfect conductor is the first

issue which arises. Figure 5.3 shows how the partially coated perfect conductor was

modelled in this thesis to compute the RCS data for Figures E.17 through E.28. Figure

5.3 shows the perfect conductor is modelled as an infinitely thin plate composed of 128

triangular patches. This figure also shows the coating is modelled as an infinitely thin

-' plate composed of 128 triangular patches. The plate forming the surface of the coating

- is spaced the distance corresponding to the thickness of the coating away from the plate

forming the perfect conductor.

Notice that the surfaces of the coating along the sides which would meet the

perfect conductor are not present in Figure 5.3. The coatings used for the experimental

measurements are relatively thin, and satisfactory RCS results were obtained from the

EFIE computer programs without including the sides of the coating surface. Also,

it was found the RCS computation was not improved by the addition of the sides

of the coating. Since the coatings were thin, the sides were composed of elongated

triangular patches. With the seven-point numerical quadrature integration scheme

used to compute the elements of the Z-matrix over the bi-triangular subdomains, the

best results are obtained with triangular patches which have sides of relatively the same

length [1241. The triangular patches used to model the sides of the coating surface do

not meet this criteria. Further, the computation time was decreased by not including

the sides of the coating (fewer triangular patches produces a smaller Z-matrix).
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The second issue was the continuity of surface current across the boundary be-

tween the exposed perfect conductor and the coated perfect conductor. The model of

the perfect conductor shown in Figure 5.3 is actually two infinitely thin plates com-

posed of 128 triangular patches. These two plates which form the exposed and coated

portions of the perfect conductor, respectively, are modelled as having a separation

of zero. However, they are still modelled as two distinct plates. For each plate, the

component of current normal to an exposed edge is zero. Therefore, there is no conti-

nuity of current between the boundary of the exposed perfect conductor and the coated

perfect conductor with the modelling scheme used in this thesis. The only justification

for this is that it was much simpler, and it gives satisfactory results. A model of the

perfect conductor was tried where the plate forming the exposed perfect conductor was

separated from the plate forming the coated perfect conductor by a distance corre-

sponding to the thickness of the aluminum plates (32 mils) used in the experimental

measurements. No improvement in the calculated RCS data was noted. Therefore, this

added complexity was discarded.

As the first step after developing and debugging the EFIE series of FORTRAN

computer programs used to compute the RCS data for Figures E.17 through E.28, it was

necessary to verify that the programs gave reasonable results. As described in Chapter

3, the required inputs to the computer programs were the geometry specifications for

the partially coated perfect conductor and the complex relative permittivity (ER) and

permeability (t&R) of the coating. The relative permittivity (ER = 1) and permeability

(tR = 1) of free space and a coating thickness of 7.62 x 10- 4 meters were used to verify

the proper performance of the computer programs. With these inputs, the computer

programs would be expected to give RCS data equivalent to that for an uncoated

perfect conductor. This was not achieved until the EFIE2PC program was modified.

The required modification to the EFIE2PC computer program involves the ap-

proximation of the integration of the weighting function over the bi-triangular subdo-

main as its value at the centroid of the triangular patch as shown in equation (A.69)

of Appendix A. When this approximation was made for all the triangular patches, the

EFIE computer programs gave an unsatisfactory match to the experimental measure-

"* .. '-. ' '" ,' ... .,. ." ' , . . . . . . . . • " . . . . .. . .*, .. . .. . . . ' '
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ments for the uncoated 10cm by 10cm square aluminum plate (Figure E.1 of Appendix

E). The EFIE2PC computer program was then modified to perform a seven-point nu-
merical quadrature integration over the bi-triangular subdomain instead of making this

approximation whenever the distance from the observation triangle to the source tri-

angle was less than the length of any edge of the observation triangle. The results were

satisfactory when this modification was incorporated into the EFIE2PC computer pro-

gram. The first entry in Table 5.2 and Figure E.17 of Appendix E show the calculated

RCS results with this modification. These results will be discussed further in the next

section.

The computed RCS data for the Eccosurb FDS coated plate are shown in the

second entry of Table 5.2 and in Figure E.18 of Appendix E. A value of CR = 8.9+iO.623

was used for the complex relative permittivity of te Eccosorb FDS radar absorbing

material, and a value of 1AR = 1.7 + il.36 was used for the complex relative permeability

of the Eccosorb FDS radar absorbing material. These values for the complex relative

permittivity and permeability are equivalent to the quoted manufacturer specifications

in Table 4.3 for the Eccosorb FDS at a frequency of 3.0 GHz.

The computed RCS data for the Eccosorb SF 6.0 coated plate are shown in the

third through seventh entries of Table 5.2 and in Figures E.19 through E.23 of Appendix

E. Values for the complex permittivity and permeability (or dielectric and magnetic

constants and loss tangents) were not available in the manufacturer's literature for the

Eccosorb SF 6.0 radar absorbing material. However, a nominal value for the loss at

normal incidence of -5 dB at a frequency of 3.0 GHz was quoted. Therefore, the values

for the complex relative permittivity and permeability shown in Table 5.2 were chosen.
The values of ER = 8.9 + iO.623 and AR = 2.9 + i2.32 for the complex relative

permittivity and permeability, respectively, of the Eccosorb SF 6.0 were chosen in the

following manner. The manufacturer's quoted value of a -5 dB loss at normal incidence

for a frequency of 3.0 GHz was used. It was assumed this was for an infinite sheet of

the radar absorbing material. Ignoring reflection at the free space/coating boundary,

a value for the imaginary part of the propagation constant which would give -5 dB of

loss was computed according to the following formula:
S.

- - -' _
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-5 dB = 20 loglo e - k''z (5.1)

where k" is the imaginary part of the propagation constant (k = wV-'), and z is equal

to twice the thickness of the Eccosorb SF 6.0 radar absorbing material (the wave travels

through the coating, is reflected at the perfect conductor, and travels back through the

coating). This value for the imaginary part of the propagation constant easily yields

a value for the product of the complex relative permittivity and permeability. Next,

since both the Eccosorb SF 6.0 and the FDS materials are based on a silicon rubber

compound, it was assumed the same value for the complex relative permittivity of the

SF 6.0 as the manufacturer quoted for the FDS radar absorbing material. Thus, the

value for the complex relative permeability was fixed. This is how the values for the

complex relative permittivity and permeability of the Eccosorb SF 6.0 radar absorbing

material quoted above were arrived at.

The values discussed in the previous paragraph for ER and AR of the Eccosorb

SF 6.0 coating produced a decrease in the RCS at normal incidence of -5.7 dB, as shown

by the first and third entries in Table 5.2. Unfortunately, this was more loss than was

measured experimentally (see Table 5.1). Various values for ER and AR were then used

to examine the behavior of the EFIE computer programs and to see which values might

produce the best fit to the experimental RCS data. This will be discussed further in

the next section.

The computed RCS data for the Eccosorb FGM 40 coated plate are shown in

the eighth through twelfth entries of Table 5.2 and in Figures E.24 through E.28 of

Appendix E. Values for the complex permittivity and permeability (or dielectric and

magnetic constants and loss tangents) were also not available in the manufacturer's

literature for the Eccosorb FGM 40 radar absorbing material. The values of ER and AR

shown in Table 5.2 for the Eccosorb FGM 40 coating were chosen in the same manner

as outlined in the previous paragraphs for the Eccosorb SF 6.0 coating.

The values of ER and 14R shown in the seventh and twelfth entries of Table 5.2

for the Eccosorb SF 6.0 and FGM 40 coatings, respectively, were chosen in a slightly

different manner. The complex relative permittivities and permeabilities listed in these

6 '':,-" .'''---- ':'''"Y '"*''"" .'-"'."-"Y "-"' :
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entries were calculated assuming the coatings have one-half the thickness and twice the

loss quoted by the manufacturer's literature for each respective coating. The results

will be discussed further in the next section.

5.4 Comparison of Experimental and Theoretical Results

The comparison of the experimental and theoretical results is done in Figures

5.4 through 5.15 at the end of this chapter. These figures are the composites of the

theoretical RCS predictions listed in Table 5.2 and the corresponding experimental

RCS plots for the same set of conditions. Figures 5.4 through 5.15 display the Uhh

versus angle curves for the experimental RCS data (solid line) and the corresponding

theoretical RCS predictions (dashed line) generated by the EFIE series of computer

programs. These figures were produced by overlaying the experimental RCS plots onto

the theoretical RCS predictions.

Verification of the performance of the EFIE series of computer programs is

provided by Figure 5.4. The relative permittivity (eR) and permeability (AR) of the

coating were set equal to the free space values in the EFIE series of computer programs

to generate the theoretical RCS prediction. As discussed in the previous section, the

computer programs would be expected to give RCS data equivalent to that for an

uncoated perfect conductor for these values of eR and IAR. Figure 5.4 is a comparison

of the experimental RCS data for an uncoated 10cm by 10cm aluminum plate and

the corresponding theoretical RCS prediction. The theoretical results are very close

to the experimental data. The first entries in Tables 5.1 and 5.2 show the theoretical

RCS at normal incidence to the coated side of the plate is only 0.1 dB below the

experimental measurement. This provides confidence in the performance of the EFIE

series of computer programs.

Figure 5.5 is a comparison of the experimental and theoretical data for an Ec-

cosorb FDS coated plate. The relative permittivity (ER) and permeability (AiR) of the

coating were set equal to the values shown in the second entry in Table 5.2 for the

EFIE series of computer programs to generate the theoretical RCS prediction. Again,

I ' ' a * ' . '' ' , ' ' r q ' ' "' ' - . '' . ' " " , * " 'b" ," . " • ' , -, - .
,
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the theoretical results are very close to the experimental data. The RCS at normal

incidence to the coated side of the plate (ahh in Tables 5.1 and 5.2) is -10.3 dBsm for

the theoretical prediction and -10.6 dBsm for the experimental measurement, a 0.3 dB

difference. Figure 5.5 also shows the match is almost exact down to approximately -25

dBsm.

Figures 5.6 through 5.10 are the comparisons of the experimental and theoretical

data for an Eccosorb SF 6.0 coated plate. Figure 5.8 shows the best fit of the theoretical

RCS prediction to the expermental measurement down to approximately -20 dBsm.

The relative permittivity (eR) and permeability (MR) of the coating were set equal to

the values shown in the third through seventh entries in Table 5.2 for the EFIE series

of computer programs to generate the theoretical RCS predictions. As discussed in

the previous section, all the values for eR and uR shown in Table 5.2 for the Eccosorb

SF 6.0 radar absorbing material were chosen, and they are not the manufacturer's

specifications. The different values of eR and UR were chosen to investigate the behavior

of the EFIE computer programs, and to see which value gave the closest fit to the

experimental data.

The RCS at normal incidence to the coated side of the plate (ahh in Tables

5.1 and 5.2) is -12.5 dBsm for the experimental measurement (third entry in Table

5.1). The theoretical predictions for the RCS at normal incidence to the coated side

of the plate are -15.5, -12.1, -12.4, -12.0, and -11.2 dBsm, respectively, for the third

through seventh entries in Table 5.2. The first theoretical prediction is -3.0 dB too low.

As discussed in the previous section, the values for 6 R and IR used to generate this

prediction were based on the manufacturer's quoted RCS reduction of a nominal -5

dB at normal incidence. The computed reduction is actually -5.7 dB (the third entry

minus the first entry in Table 5.2). The next three RCS predictions in Table 5.2 for the

SF 6.0 are relatively close: a difference of +0.4 dB, +0.1 dB, and +0.5 dB, respectively,

from the experimental measurement. The last RCS prediction for the SF 6.0 assumed

a coating with twice the thickness and one-half the loss to compute the values of cR
and u. This prediction was +1.3 dB too high.

Figures 5.11 through 5.15 are the comparisons of the experimental and theo-
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retical data for an Eccosorb FGM 40 coated plate. Figures 5.13 and 5.14 both show

a close fit of the theoretical RCS prediction to the expermental measurement down

to approximately -20 dBsm. The relative permittivity (eR) and permeability (ALR) of

the coating were set equal to the values shown in the eighth through twelfth entries in

Table 5.2 for the EFIE series of computer programs to generate the theoretical RCS

predictions. As discussed in the previous section, all the values for eR and /itj shown in

Table 5.2 for the Eccosorb FGM 40 radar absorbing material were chosen, and they are

not the manufacturer's specifications. The different values of ef and /I.R were chosen

to investigate the behavior of the EFIE computer programs, and to see which value

gave the closest fit to the experimental data.

The RCS at normal incidence to the coated side of the plate (ohh in Tables

5.1 and 5.2) is -13.3 dBsm for the experimental measurement (fourth entry in Table

5.1). The theoretical predictions for the RCS at normal incidence to the coated side

of the plate are -12.5, -15.3, -13.0, -13.5, and -12.2 dBsm, respectively, for the eighth

through twelfth entries in Table 5.2. The first four RCS predictions in Table 5.2 for the

FGM 40 are a difference of +0.8 dB, -2.0 dB, +0.3dB, and -0.2 dB, respectively, from

the experimental measurement. The last RCS prediction for the FGM 40 assumed a

coating with twice the thickness and one-half the loss to compute the values of ER and

A R. This prediction was +1.1 dB too high.

The difference of the theoretical RCS predictions from the experimental RCS

measurements is a function of the approximations made in the theoretical model. One

approximation to consider is the modelling of the coating. As discussed in the previous

section, the surfaces of the coating along the sides which would meet the perfect con-

ductor were not used. This could account for the differences between the theoretical

RCS predictions and the experimental RCS measurements near ±90' in Figures 5.4

through 5.15. At these angles the contribution of the sides of the coating to the overall

RCS could be more important. This issue and others are discussed further in Chapter

7.

V .... .]
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Coatings listed are Eccosorb radar absorbing material

Targets are square aluminum plates coated on one side

f = radar frequency in gigahertz (GHz)

RCS measurements made at 360 points from -1800 to 1800

RCS is in decibels referenced to one square meter (dBsm)

ahh = RCS at normal incidence (00) to coated side of plate

I for HH polarization

Plate Size Coating Case f ahh Figure

10cm. X 10cm, None 13 3.0 -9.7 E.1

*10cm. X 10cm, FDS 16 3.0 -10.6 E.2

*10cm. X 10cm. SF 6.0 15 3.0 -12.5 E.3

10cm, X 10cm, FGM 40 14 3.0 -13.3 EA4

10cm. X 10cm, None 13B 6.0 -3.4 E-5

10cm, X 10cm. FDS 16B 6.0 -4.5 E.6

10cm. X 10cm SF 6.0 15B 6.0 -20.0 E.7

10cm. X 10cm. FGM 40 14B 6.0 -15.2 E.8

15cm x 15cm None 9 3.0 -1.1 E.9

15cm, x 15cm. FDS 12 3.0 -2.1 E.10

15cm. x 15cm. SF 6.0 11 3.0 -4.4 E.11

15cm. x 15cm FGM 40 10 3.0 -7.0 E.12

15cm. X 15cm. None 9B 6.0 4.5 E-13

15cm x 15cm, FDS 12B 6.0 3.3 E-14

15cm, x 15cm. SF 6.0 11B 6.0 -13.3 E. 15

*15cm x 15cm, FGM 40 10B 6.0 -9.4 E.16

Table 5.1. Experimental Radar Cross Section Plots



IW I

Chapter 5. Experimental and Theoretical Results 56

Coating parameters used correspond to Eccosorb specfications

=R complex relative permittivity of coating

AR - complex relative permeability of coating

Targets are square plate perfect conductors coated on one side

Radar frequency is 3.0 gigahertz (GHz) for all entries

RCS computations made at 109 points from -180 to 1800

ahh = RCS at normal incidence (00) to coated side of plate

for HH polarization

* permittivity and permeability for these two cases computed

assuming coatings have one-half the thickness and twice the loss

Plate Size Coating ER AR ahh Figure

10cm x 10cm None (1.0,0.0) (1.0,0.0) -9.8 E.17

10cm x 10cm FDS (8.9.0.623) (1.7,1.36) -10.3 E.18

10cm x 10cm SF 6.0 (8.9,0.623) (2.9,2.32) -15.5 E.19

10cm x 10cm SF 6.0 (5.0,0.623) (1.3,0.93) -12.1 E.20

10cm x 10cm SF 6.0 (5.0,0.0) (1.18,1.09) -12.4 E.21

10cm x 10cm SF 6.0 (8.9,0.623) (1.85,0.83) -12.0 E.22

10cm x 10cm SF 6.0 (8.9,0.623) (0.46,0.21)* -11.2 E.23

10cm x 10cm FGM 40 (11.0,0.1) (4.2,3.8) -12.5 E.24

10cm x 10cm FGM 40 (5.0,0.0) (9.2,8.5) -15.3 E.25

10cm x 10cm FGM 40 (8.9,0.623) (5.5,4.4) -13.0 E.26

10cm x 10cm FGM 40 (8.0,0.0) (5.8,5.4) -13.5 E.27

10cm x 10cm FGM 40 (8.9,0.623) (1.37, 1.1)* -12.2 E.28

Table 5.2. Theoretical Radar Cross Section Predictions
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Figure 5.1. Experimental 3.0 GHz RCS for uncoated (solid line) and Eccosorb FDS coated

(dashed line) 10cm, by 10cm, aluminum plate: O'hh versus angle
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Figure 5.3. Triangular patch model of partially coated perfectly conducting square plate
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FGM 40 coated 10cm, by 10cm aluminum plate: ahh, versus angle (3 of 5)
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Chapter 6

GENERALIZATION TO MULTI-LAYERED COATING

6.1 Introduction

This chapter presents the extension of the procedure discussed in Chapter 3 to

a multi-layered coating. Chapter 3 discussed the approach used for a single layer of

coating on a perfectly conducting surface. The cases of a completely coated perfect

conductor and a partially coated perfect conductor were derived in Chapter 3. This

chapter also discusses the cases of a completely coated perfect conductor (section 6.2)

and a partially coated perfect conductor (section 6.3) with multi-layered coatings.

6.2 Completely Coated Perfect Conductor

Using Huygens' principle, the equivalence principle, and satisfying the bound-

ary conditions for a completely coated perfect conductor generates a set of integro-

differential equations (see Appendix A). Applying the method of moments to this set

of integro-differential equations produces a matrix equation. As derived in Appendix A

for one layer of coating completely enclosing a perfect conductor (refer to Figure 3.1),

the matrix equation is of the form:

Z 21 Z 22  Z23  l .(6)

The left half of the equation represents the excitation vector, and the right half of

the equation represents the interaction matrix, Z-matrix, times the unknown electric

and magnetic surface current coefficients. This matrix equation corresponds to three

simultaneous equations in three unknowns. Now, the third equation can be used to

%I
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back-substitute and reduce the size of the Z-matrix:

Jo = Z [Z31" Ji + Z3 2 " V 1]. (6.2)

Back-substituting leaves two simultaneous equations which can be written as the fol-

lowing matrix equation:

HMI 1=I ==f1 63

Z21  Z22  M)(63

where

Z11 = Z11 - Z13 Z3 3 Z31 (6.4)
----- I=- ---

Z12 = Z 12 - Z13 Z3 • (6.5)

Z21 = Z - Z . Z33 Z31 (6.6)
=11=--

Z2 = Z - Z2z3 • Z32. (6.7)

Assume N basis functions are obtained over each boundary surface using the

method of moments. Equation 6.1 requires the inversion of a 3N by 3N Z-matrix to

compute the unknown surface current coefficients. Back-substitution requires the inver-

sion of an N by N matrix, Z 3 3 , some matrix multiplications and additions, equations

6.4 through 6.7, and the inversion of a 2N by 2N Z-matrix, equation 6.3. However, all

the target structure beneath the coating has been replaced by an equivalent interac-

tion matrix as shown in equation 6.3. This has significance for the extension of the

procedure discussed in Chapter 3 to multi-layered coatings.

For two layers of coating on a perfect conductor (refer to Figure 6.1), the matrix

equation is of the form:

Em Z 11  Z 12  Z13  Z14  0 J2

m" = Z3 1  Z 32  Z3 3  Z 34  Z3 5 HV(6.8)
m Z 41  Z4 2  Z 43  Z44  Z 45  M)

0 0 Z 53 Z5S4 Z55 j
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This matrix equation represents five simultaneous equations in five unknowns. Back- 4

substituting the fifth equation in 6.8 in the manner used for 6.1 yields a matrix equation

of the form:

Em\ (Zii ! 12  Z 13  Z 14  J2m, IZ 2 , 2, 2(6.9)
(m -Z 2 1  Z 22  Z2 3  Z 24  V

O"1 Z 31  Z 32  Z 33  Z3 (6.9

which represents four simultaneous equations in four unknowns. Obviously, the ele-

ments of the Z-matrix in equation 6.9 are not the same as the elements of the Z-matrix

in equation 6.8 due to the back-substitution. Further, the explicit equation represent-

ing the interaction of the perfect conductor surface with the first layer of coating has

now been absorbed into the equivalent Z-matrix shown in 6.9. Now, the third and

fourth equations in 6.9 can be written as
4."

Z 33 • Ji +Z 34 •Ml - - 31 .72 +Z 32 •M 2 ] (6.10)

and

Z 4 3 .J + Z 4 4 MI[Z 4 1 2..2  + Z 4 2 . '9], (6.11)

which becomes

33 _34 j7,1 -32( ~ ~ ia = \Q 1M2) (6.12)

Therefore,

3 3 - 1 3

Z43 Z44) Z,41 Y42)(M2)"(.

Back-substituting equation 6.13 into 6.9 produces a matrix equation of the form:

~~7I') (Z21 Z22 J 61)*
Again, assume N basis functions are obtained over each boundary surface using

the method of moments. Equation 6.8 requires the inversion of a 5N by 5N Z-matrix

• . . ' d Th '*.* i . : , r , . ... ( .. W
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to compute the unknown surface current coefficients. Back-substitution requires the

inversion of an N by N matrix, some matrix multiplications and additions, the inversion

of a 2N by 2N Z-matrix, equation 6.13, followed by some matrix multiplications and

additions, and, finally, the inversion of another 2N by 2N Z-matrix, equation 6.14.

All the target structure beneath the second layer of coating has been replaced by an

equivalent interaction matrix as shown in equation 6.14. This additional layer of coating

only requires the inversion of an additional 2N by 2N Z-matrix over the one layer case.

For three layers of coating on a perfect conductor (refer to Figure 6.2), the

matrix equation is of the form:

i .

EM ) ( 0 0 0)

HMI Z2 1 Z 22  Z2 Z_ 0 0_ M

6MII Z31  Z32  Z33  Z34  Z35  Z36  0 J
Z41 Z42  Z43 Z44 Z45 Z46  0 M2 (6.15)

_mi. 0 0 Z5 3  Z 54  Z 55  Z 56  Z 57  J
0 0 Z63  Z64  Z65  Z66  Z67

ko(i / JO-/ -- :/ :t M

0 0 0 0 Z7 5  Z76  Z77 o

By the same logic used for the 2 layer case, back-substitution reduces the size of the

* Z-matrix for three layers of coating enclosing a perfect conductor:

f-ft =11l

(Z 11  Z 12  7

HM Z21  Z22 )k M3) (.6

since

=2 Z3 -3 =::31 Z3) j

Z3 3  Z3 4 )= (6.17)
kZ43  Z44 / kZ41  Z42  I~3

Again, assume N basis functions are obtained over each boundary surface using

the method of moments. Equation 6.15 requires the inversion of a 7N by 7N Z-matrix

to compute the unknown surface current coefficients. Back-substitution requires the

inversion of one N by N and three 2N by 2N matrices, along with some intermediate

matrix multiplications and additions. All the target structure beneath the third layer

of coating has been replaced by an equivalent interaction matrix as shown in equation

I
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6.16. This additional layer of coating only requires the inversion of an additional 2N

by 2N Z-matrix over the two layer case.

A recursive relationship emerges for multi-layered coatings enclosing a perfect

conductor. Instead of the problem involving the inversion of ever larger Z-matrices

for each added layer of coating, it becomes one of the intermediate inversion of a 2N

by 2N matrix for each added layer of coating. Thus, after each intermediate 2N by

2N inversion and back-substitution, the effects of the inner layer are included, and the

inner layer's unknown surface current coefficients are discarded. So, for the three layer

example, instead of inverting a 7N by 7N Z-matrix (inversion time increases as N 3),

the problem involves the inversion of one N by N and three 2N by 2N matrices. The

problem only increases linearly in computation time for each added layer: another 2N

by 2N matrix inversion for each added layer of coating.

For n layers of coating on a perfect conductor (refer to Figure 6.3), the matrix

equation is of the form:

Em 711 12 Z1 Z14 ... 0 inEm,, Z 1 1 Z 1 2 Z1 3 Z, ... 0 .-HmI Z 2 1  Z 22  Z2 3  Z 24  ... 0 H
6M1Z 3 1 Z 32  Z3 3  Z34  ... 0 __-

Z4 1 Z 4 2  Z43 Z44 ... (6.18)

M(2n) 0 0 0 0 ... .(2n+l)(2n+l) . 0

The extension to n layers of coating enclosing the perfect conductor is straightforward,

given the approach outlined above. Starting with the innermost layer, the Z-matrix

elements would be computed as for the single layer case presented in Appendix A. How-

ever, instead of the surrounding medium being free-space, it now has the permittivity

and permeability of the next layer of coating. Matrix inversion and back-substitution

proceeds progressively for each layer of coating added, with the permittivity and per-

meability of the surrounding medium always being that of the next layer to be added.

This process is repeated until the outermost layer of coating is reached. The equiva-

lent electric and magnetic surface current coefficients of the outermost layer are then

computed, and the scattered field is calculated as discussed previously.

,_.. ." . .# ,. , , ... ,r. : , ,?. . .:.. ,' . ., -. ' '_.,, '. " '-'-'- .'" -."" "" " o ' ,,' S _*' '. ', '
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6.3 Partially Coated Perfect Conductor

The generalization to a multi-layered coating for a partially coated perfect con-

ductor follows the same line of reasoning as presented in section 6.2 for the completely

coated perfect conductor. Using Huygens' principle, the equivalence principle, and sat-

isfying the boundary conditions for a partially coated perfect conductor generates a set

of integro-differential equations (see Appendix A). Applying the method of moments

to this set of integro-differential equations produces a matrix equation. As derived in

Appendix A for one layer of coating partially enclosing a perfect conductor (refer to

Figure 3.3), the matrix equation is of the form:

.T.1 ) = )6.13)"4.

On \Z 4 1  Z 42  0 Z4 4

The left half of the equation represents the excitation vector, and the right half of

the equation represents the interaction matrix, Z-matrix, times the unknown electric

and magnetic surface current coefficients. This matrix equation corresponds to four

simultaneous equations in four unknowns. Now, the fourth equation in 6.19 can be

used to back-substitute and reduce the size of the Z-matrix:

J3 = Z44 [Z Ji + Z 4 2 "M j9 1 . (6.20)

Back-substituting leaves three simultaneous equations which can be written as the

following matrix equation:

YM Z 1 1 Z 12  Z13= 2MOZ2 M, (6.21)
Z21  Z22  Z23  (.1

whreZ 31  Z32  Z3 ) kwhere

Z'1= Z -1 Z44 Z41 (6.22)

,..-
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Z12 Z12 - Z14"Z44 " 42 (6.23)

Z13 Z13 (6.24)

Z21 Z21 Z24 Z44 Z 4 1  (6.25)
--1 = = 1 --

Z22 - Z24 Z44 Z 4 2. (6.26)

Z23 = Z23 (6.27)

Z31 = Z31 (6.28)

Z = 2 (6.29)-I2 -

Z33 = Z3 (6.30)

Assume N basis functions are obtained over each boundary surface using the

method of moments. Equation 6.19 requires the inversion of a 4N by 4N Z-matrix to

compute the unknown surface current coefficients for a partially coated perfect conduc-

tor. Back-substitution requires the inversion of an N by N matrix, Z 44 , some matrix

multiplications and additions, equations 6.22 through 6.30, and the inversion of a 3N

by 3N Z-matrix, equation 6.21. However, all the target structure beneath the coating

has been replaced by an equivalent interaction matrix as shown in equation 6.21. This

has significance for the extension of the procedure discussed in Chapter 3 and section

6.2 to multi-layered coatings over a partially coated perfect conductor.

For two layers of coating on a partially coated perfect conductor (refer to Figure

6.4), the matrix equation is of the form:

Em Z11  Z12  Z 13  Z14  ZI5  0 J
Hm' Z 2 1 Z 2 2 Z 2 3 Z 2 4 Z 2 5  0 "2

OMr" Z 3 1 Z 3 2 Z33  Z 34  0 Z3  (6.31)

0 0 Z f3  0 6 0 Z6 6 r,~
Em(iw o 0 Z 63  Z 4  0 Z 66

This matrix equation represents six simultaneous equations in six unknowns. Back-

substituting the sixth equation in 6.31 in the manner used for 6.19 yields a matrix

equation of the form:

.-. . .. . . . . .
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Em (Z 11  Z 12  Z13  Z14  Z15 J
RmlZ 21  Z 22  Z 23  Z 24  Z 25  1 M 2 )

(6mia Z 31  Z 32  Z 33  Z 34  0 M, (6.32)
Z 4 1 Z 4 2  Z 4 3  Z 4 4  0

75 52  0 0 755 )kJ,
which represents five simultaneous equations in five unknowns. Obviously, the elements

of the Z-matrix in equation 6.32 are not the same as the elements of the Z-matrix in

equation 6.31 due to the back-substitution. Further, the explicit equation representing

the interaction of the coated perfect conductor surface with the first layer of coating

has now been absorbed into the equivalent Z-matrix shown in 6.32. Now, the third and

fourth equations in 6.32 can be written as

Z 33 JI + Z3 4 MI [Z'31 J 2 +Z 3 2 " M2  (6.33)

and

Z 4 3 JI + Z 44 M1 -[Z 4 .72 + Z 42 " M 2 ], (6.34)

which becomes

Z33 -- -I~ = - . (6.35)
kZ43  Z44 ]\Mi 1\- 4 1  -Z 42 Mk1~2/

Therefore,

(J1 -1.44
_ 3 _3 Z'1 32 ~ 72

(7 )(M= - - /1\ 2 ) (6.36)
(Z3Z 44 I Z41  Z42

Back-substituting equation 6.36 into 6.32 produces a matrix equation of the form:

Tm Z 11  Z 12  Z 13  (72\S  Z22  z 2 3  (M 2  (6.37)

Emil ) --' = =' J3
Z3 1  Z3 2  Z3 3

Again, assume N basis functions are obtained over each boundary surface using

the method of moments. Equation 6.31 requires the inversion of a 6N by 6N Z-matrix

to compute the unknown surface current coefficients. Back-substitution requires the

A. L l,"
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inversion of an N by N matrix, some matrix multiplications and additions, the inversion

of a 2N by 2N Z-matrix, equation 6.36, followed by some matrix multiplications and

additions, and, finally, the inversion of another 3N by 3N Z-matrix, equation 5.37.

All the target structure beneath the second layer of coating has been replaced by an

equivalent interaction matrix as shown in equation 6.37. This additional layer of coating

only requires the inversion of an additional 2N by 2N Z-matrix over the one layer case.

For three layers of coating on a perfect conductor (refer to Figure 6.5), the

matrix equation is of the form:

Em (11 12Z3Z4 0 0 Z 17  0 J

Hm Z 2 1  Z 22  Z 23  Z 24  0 0 Z 27  0 193
0 ,, [Z 3 1  Z 3 2  Z33 Z 34  Z 35  Z36  0 0 72

Z4 1  Z 42  Z4 3  Z44  Z 45  Z46 0 0 M2

0m(iv) 0 0 Z53 Z54 _ Z55 Z5 (6.38)
_m(f) 0 0 Z6 3  Z64  Z65 Z6 0 Z 68  -i

Em(1,, ,ei1 ,2 o4
°Z71P-0 o 0 0 0 0 Z77  0

0 0 0 0 Z8 5  Z86  0 Z8 85  j

By the same logic used for the 2 layer case, back-substitution reduces the size of the

Z-matrix for three layers of coating partially enclosing a perfect conductor:

-- -U II - i

z11  1,2  Z'13=I/3
HI Z 2 1  Z 22  Z 23  Ms (6.39)

Z31 Z32 Z33

since

) 2 -, = , -1 = ' -s(k)2 (Z33 Z4) (1 Z32 ) (6.40

Again, assume N basis functions are obtained over each boundary surface using

the method of moments. Equation 6.38 requires the inversion of an 8N by 8N Z-matrix

to compute the unknown surface current coefficients. Back-substitution requires the

inversion of one N by N matrix, two 2N by 2N matrices, and one 3N by 3N matrix along

with some intermediate matrix multiplications and additions. All the target structure

*=- *5 . . - 5.- . . ...-55.*5 -. =q - - -,% . .. . . . . .- . - . , . . - '
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beneath the third layer of coating has been replaced by an equivalent interaction matrix

as shown in equation 6.39. This additional layer of coating only requires the inversion

of an additional 2N by 2N Z-matrix over the two layer case.

A recursive relationship emerges for multi-layered coatings partially enclosing

a perfect conductor. Instead of the problem involving the inversion of ever larger Z-

matrices for each added layer of coating, it becomes one of the intermediate inversion

of a 2N by 2N matrix for each added layer of coating. Thus, after each intermediate 2N

by 2N inversion and back-substitution, the effects of the inner layer are included, and

the inner layer's unknown surface current coefficients are discarded. So, for the three

layer example, instead of inverting an 8N by 8N Z-matrix (inversion time increases as

N3 ), the problem involves the inversion of one N by N matrix, two 2N by 2N matrices,

and one 3N by 3N matrix. The problem only increases linearly in computation time for

each added layer: another 2N by 2N matrix inversion for each added layer of coating.

The extension to n layers of coating partially enclosing the perfect conductor is straight-
forward, given the approach outlined above. Starting with the innermost layer, the

Z-matrix elements would be computed as for the single layer case presented in Ap-

pendix A. However, instead of the surrounding medium being free-space, it now has

the permittivity and permeability of the next layer of coating. Matrix inversion and

back-substitution proceeds progressively for each layer of coating added, with the per-

mittivity and permeability of the surrounding medium always being that of the next

layer to be added. This process is repeated until the outermost layer of coating is

reached. The equivalent electric and magnetic surface current coefficients of the out-

ermost layer and the exposed perfect conductor are then computed, and the scattered

field is calculated as discussed previously.

With the information in this chapter, Chapter 3, and Appendix A, the approach

to use for various combinations of coatings and layers of coatings at different locations

on the perfect conductor should be obvious. Equivalent interaction matrices which

incorporate the cumulative effects of the innermost layers of coatings and perfect con-

ductors would be computed as described above. Then the outermost equivalent electric

and magnetic surface current coefficients would be calculated by multiplying the ex-
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citation vector by the equivalent interaction matrix. Finally, the far-field radiation

pattern would be computed from the equivalent electric and magnetic surface currents

for the outermost surfaces. Thus, using Huygens' principle, the equivalence principle,

the appropriate boundary conditions, and the method of moments, the radar cross

section for coated perfect conductors with arbitrary geometries can be predicted.

qI
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L!'igure 6.1. Two Layers of Coating Completely Enclosing a Perfect Conductor

Figure 6.2. Three Layers of Coating Completely Enclosing a Perfect Conductor
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Figure 6.3. N Layers of Coating Completely Enclosing a Perfect Conductor
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Figure 6.4. Two Layers of Coating Partially Enclosing a Perfect Conductor
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Figure 6.5. Three Layers of Coating Partially Enclosing a Perfect Conductor
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Chapter 7

CONCLUSIONS AND SUGGESTED FUTURE EFFORTS

7.1 Conclusions

1. In this thesis, Huygens' principle, the equivalence principle, the appropriate bound-

ary conditions, and the method of moments were used to predict the radar cross

section (RCS) for coated perfect conductors with arbitrary geometries. Experimen-

tal RCS measurements were performed on square aluminum plates coated on one

side with radar absorbing material (Chapter 4). Theoretical RCS predictions were

generated using the electric field integral equation (EFIE) series of computer pro-

grams (Chapter 3). The EFIE series of computer programs gave a very good match

between the experimental RCS measurements and the theoretical RCS predictions

for a partially coated plate (Chapter 5), considering the approximations made in the

theoretical model. Further, once the equivalent electric and magnetic surface cur-

rents have been computed for the coated target, near-field and far-field phenomena

can be computed and studied.

2. The matrix equations for multi-layered coatings on a perfect conductor were derived

(Chapter 6), and the procedure was discussed to extend the derivations presented

in this thesis to multi-layered coatings or various coatings over the same perfectly

conducting surface.

3. Som, of the approximations and limitations of this approach and method of solution

to compute the radar cross section prediction for coated perfect conductors with

arbitrary geometries are the following:

a. An approximation is made of the integration of the weighting function over the

I
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bi-triangular subdomain as its value at the centroid of the triangular patch as is

shown in equation (A.69) of Appendix A. This approximation reduces two numer-

ical integrations over every bi-triangular subdomain to just one. This approxima-

tion is made when the distance from the observation triangle to the source triangle

is more than the length of any edge of the observation triangle. If this criterion

is not satisfied, a seven-point numerical quadrature integration is performed over

the bi-triangular subdomain.

b. Geometry modelling issues:

1. The sides of the coating which meet the perfect conductor were ignored

in the model of the coating surface. Since the coatings were thin, this approximation

gave satisfactory results. However, it might not be possible to ignore the sides of the

coating if thicker coatings are used.

2. The effects of various triangular patch shapes must be considered when

modelling the geometry of the coated perfect conductor [124].

3. The sides of the coating structure were ignored since the triangular

patches became too elongated.

4. For the partially coated perfect conductor, there is a discontinuity of

electric surface current at the junction between the exposed and the coated perfect

conductor surfaces since both are modelled as separate and distinct surfaces.

5. There is a compromise between the size of the target used, the frequency

of the RCS calculations, the core memory and magnetic disk storage requirements for

the Z-matrix, and the computation time required to calculate the RCS data. These

factors must be considered when determining how many triangular patches to use to

model the geometry of a coated perfect conductor.

7.2 Suxzested Future Efforts

1. Investigate various modellings for the coatings and the perfect conductors. One

example would be to incorporate the sides of the coatings which meet the perfect
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conductor into the geometry model while keeping the edges of the triangular patches

approximately equal. Another example would be to model the square plate as a box.

This would then include the effects of the finite thickness of the plate and satisfy

the condition of continuity of electric surface current at the boundary between the

exposed and coated portion of the perfect conductor.

2. Incorporate continuity of electric surface current at the boundary between the ex-

posed and coated portion of the perfect conductor while still modelling the geometry

of each as separate and distinct surfaces.

3. Investigate the results for other numerical quadrature integrations over the bi-

triangular subdomains (see Chapter 3).

4. Write the computer programs and generate theoretical RCS predictions for multi-

layered coatings over a perfect conductor. Compare to experimental RCS measure-

ments for multi-layered coatings over a metal plate.

5. Incorporate into the EFIE computer programs the ability to add wire antennas to the

coated perfect conductor. Compute theoretical RCS predictions with wire antennas

added, and compute radiation patterns for the wire antennas near an uncoated and

a coated perfect conductor. Compare the results.

6. Incorporate into the EFIE computer programs the ability to compute the RCS for

coatings with rough surfaces.

7. Incorporate into the EFIE computer programs the ability to compute the RCS for

anisotropic coatings.

h
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APPENDIX A

DERIVATION OF GOVERNING EQUATIONS

A.1 Introduction

This appendix contains a derivation of the governing equations for the method

of moments applied to the radar cross section prediction for coated perfect conductors

with arbitrary geometries. The equations for the interaction matrices are derived using

the equivalence principle, Huygens' principle, the appropriate boundary conditions, and

the method of moments. The derivation of the equations for the interaction matrix of

a completely coated perfect conductor is presented first, followed by the derivation of

the equations for the interaction matrix of a partially coated perfect conductor.

A.2 Completely Coated Perfect Conductor

This section contains the derivation of the equations for the interaction matrix of

a completely coated perfect conductor. e-" t is suppressed in the following derivation.

This corresponds to a time harmonic solution at a single frequency. Refer to Figures

3.1 and 3.2 as a reference for the following derivation.

Since the boundary surfaces of the coated target will be replaced by an equivalent

set of surface currents using the equivalence principle, the dyadic Green's function in

an unbounded medium can be used. The dyadic Green's function in an unbounded

medium [128] is defined as

i(f, f) = [I+ -VVjg(f, F) (A.1)

where g is the scalar Green's function defined as
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getklfr-il (A.2)

In region 0, the free space outside the object,

U0 = [7+ T2VV]go(7, I')(A3

where

go~rf-' (A.4)

and

* = w0/iioio.

In region 1, the coating on the perfect conductor,

I [7 VVgi(7 F) (A.5)

where

91 eilF" (A.6)
4Ir17 - rI

and

k1 =w vri

and As and e can be complex.

At surface SI:

9io x Vo =-l xEl (A.7)

and, therefore, by the equivalence principle

= -M 1 .(A.8)

Also
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to x -Ho = -ii x -H (A.9)

and, therefore, by the equivalence principle

J1 -- -Jj" (A.10)

At surface S 2 :

42 x E = 0 (A.11)

and

hi2 x H1 = J 2. (A.12)

Using Huygens' principle (see equation 3.1) in Region 0:

-Eo +-Eic P inc + dSi{iwoGo"- -J 1 - V x Go V M 1} (A.13)

and

Ho =Fine + H = inc + J dSi{iwoGo .MI + V x Go' -J }. (A.14)

Using Huygens' principle in Region 1:

* F s
, dSj{iw "GiJ - V x Gi. "M} + dS2{iwGi-1 J2} (A.15)

S11S2
and

H- = dSi{iwEG- M 1 + V x 1 71} + dS2{V x G1 J 2 }. (A.16)

Applying the boundary conditions at surface SI:

.4

fthox Eo =0 fo x El. (A.17)

-ea I
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Therefore, at S1

hoxEi. + fio x f dSl{iwuoGo" J. - V x Go "-M} =

Ao x f dS{iwlAi " J, - V x Gi. -M} + Ao x f dS2 {iwlAi. J 2} (A.18)

Also at S1

ho x Ho = no x F 1  (A.19)

and, therefore, at SI

,I ox Hine + ,o x j dSi{iw,.oGo.- M1 + V x Co. , }=

0 o xfJ dS,{iwEG, . M, + V x U1 " Jj} + 4ox dS 2 {V x G" J 2} (A.20)

Now, at surface S2

A2 x El = 0. (A.21)

Therefore, at S 2

h 2 x dSi{iwiG . J- V x G, -M 1 } + A 2 x dS2 {iw~u~x. J2} 0. (A.22)

f 1 S 2

Also at S 2

42 x HI =j2 (A.23)

J

and, therefore, at S2

2 x] dSj{iwG 1  Mr1 +VxG •Jj}+h= x] dS 2 {V x J 2 } =J 2. (A.24)

Using equations (A.8) and (A.10) equation (A.18) becomes

-ho xJ dSl{iw oGo " JI}) - ho x dSI{iwli?. JI} + ho xf dS{V x Go."Mi}

f . * * ** %' %'.



Appendix A. Derivation of Governing Equations 106

+fio x fS dSi{V X Z7 M1 }I + ho X js dS2 {iWIsGi '72 = ZO X Win (A.25)

and equation (A.20) becomes

-AO xJf dSi{V x Go -7)}- oX fS dSi{v X G, 71}- ho Xf dS{iweoGo i-lV

--oX dSifiwEOi -Hl} + ,ao X fdS2 {V X Gl 7 2 } =ho X Hin (A.26)

and equation (A.22) becomes

-lh2X d,{ij i}71 + 42Xf dS1 {v XGgl

+fi2 X fdS2 {iWIAG1 -721 = 0 (A.27)

and equation (A.24) becomes

-2X fSIdS1 {V X Gl 711 - A2 X fS dS, {iweGi. - }

+f12 X j4 dS2{V X =G 72 1 - 72= 0. (A.28)

Equations (A.25), (A.26), and (A.27) are of the form

L11 -71 + L 1 2 VM1 + L 13 .12 = 40O X line (A.29)

L 21 -J,+ L 2 2 MI +L 2 3JY 2 = ox Hine (A.30)

L31 71 L32j~l+ L3 72= 0(A.31)

or the more compact form

L21  L 22  L 23  _u = l X !Hlin) (A.32)
L31 L 32 L33 7
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where

L1= -fio x fS dSiiw{jzo=Go + IA--1}. (A.33)

L2= f1 X jS dS1 {V x =Go + V X G} (A.34)

L 13 = fio X 15 dS2{iwjG 1 }. (A.35)

L1= -AO X dS1 {V x Go+ V x (A.36)

L2= -AO Xj dSiiw{,Eo~o + eGl}. (A.37)

L3= fi x]ZS dS2 {V X ?71 1' (A.38)

L 31 = -f&2 x j dSi~wtzi}.j (A.39)

L 32 = A2 x LS dS1 {V x G1 }. (A.40)

L 33 = n^2 X fs dS2{iwA=Gll}.. (A.41)

Note that L12 = -1,21 and if E and j1s are interchanged LI, L22 . Further, if

surfaces S1 and S2 are interchanged L13 = -1,31 and L23 = L32 . Equations (A.32)

through (A.41) with the G's expanded match Mitschang's derivation [701 in which he

used the vector and scalar potential formulation. Finally, using equation (A.27) and

not using (A.28) corresponds to the electric field integral equation (EFIE) approach

discussed by Rao, Wilton, and Clisson [811. If (A.28) were used and (A.27) were not

d used, this would correspond to the magnetic field integral equation (MFIE) approach.

If a weighted sum of the EFIE and the MFIE are used, this would correspond to

tp*.~Jd . * * \a ~ * \ ..



Appendix A. Derivation of Governing Equations 108

the combined field integral equation (OFIE) approach discussed by Rogers [120] and

Mitschang et al [701.

Now rewriting (A.32) as three distinct equations gives

flo X ic = -ho X fS dS, iw {io=Go += i7 + fo x fSIdS,{V x=o + V X GO}.XVi

+fzJs dS {iwtGi}7 (A.42)

ho XFin -ho xJf dS1{V x Go + V x GO -J1 - hoXf dSuiw{iEOGo + Eci} -V

+flo X Z dS 2 {V XG?1)}.i2  (A.43)

*0 -fL2 X fS dS, {iwjX~i} I 1  A2 X 151 dS1{V x =GCd.ju

+f&2 X Js. dS2 {iWAGi} 72  (A.44)

After expanding G, (A.42), (A.43), and (A.44) become (with R= If - f'I)

hXPi=- n~o X 5 dSjiwj1 ojj - n XVf dS , (V. 1)

ho X S~i 7rR no XVx~ dS (V.M\
0 Js 1  f4rR Is IS~V.1 4

* oXVXdS~iwHJ ikR + o XVX Vr~ dS, (V.WISI) y ___

4,r 15 fI1c 47rR (.5

'.7. ho X * V~ X * d***w ** kI + fzo X* V* X~ V~ ~ dS 1~ (V e ** , * S **R,

* S C P rR k 2 4 . . 5 5 C 
5  

~ ~ 5
~ S I f*S I~ IP 4. r '
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ftoxH, -ox V X dS71e'O - no X S V.J eikoR

fSi 4,rR fS k/2\*) 47rR

-ftoxx f di~i--ftox, R
-Axx dj iVf dSlk!(V KY1) kR

S1 fS4rRk2 4r

eikoR -WC ~ fd~ ( ikoR

110 0r S j 4rR

e~-;~ ekiRi~ vd -v. ikiR
-LxfS 1:ELL 4krR fI1 1  1?~ 47rR

+f XV dS272 - + AlR V XVfdS! (V ) ik IR (.6
+flO S2 f2 4rR fS2 2  47rR (.6

-f2X dS 1 sw J elkiR is22X 1 dS, 1 A V )7I) 42,R
fS I fS4rRk24r

+ f12XV XfdSMjW eikR lf2XVXV d,1(V V k, R

2Js 1147rR 
2  s k 1  47rR

f- eskl R f 'd"~ eikjR

+ f&2 X dS 2 iwAJ 2 + f 2 X V dS !-(V -J)- (.7
ISS27rR ft k241rR

These three equations have functions with the following form:

X :i~f)J = L.-'J,, I -k I ] e(A.48)

Now from Appendix A-i equation 14 in Van Bladel [127]

V X(Ad) =VA x a+AVx a (A.49)

Therefore,

VX eikif-l7e eikiPP'I 7fl ( e iFj) 7e. (A.50)
I If ('1V i F1 ) + f- /

The second term on the right is zero since V = V(F), and thus

- x iFf df j()Xv( )de (A. 51)

............................................
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which gives

X )'=' df( (A.52)

and by duality

X , IvFI, Mik' X v'(,ekrf ) d' (A.53)

Using these results and the fact that V x VA = 0, (A.45),(A.46), and (A.47)

become

hoxi"= -ho X jdS, iwiso7i -ej - noXV jdS, !j-20 (V k

C cikiR f iw
- fo Xf dSuiwusJ1  nx xV S!WAV.7)e

f1 frR is k2 47rR

+ hof dvjXV(eio) f X dSIVI xV()
SI ix( 47rR~ +fl I J 5  4rR

+ ho xf dS2iw1 .J2 e ikiR + flo X V [dS2 i4;&(V JeikR (.4

47rR k2 1  4rR

- ~ < - e iko R ) v j d 1 O ( M ) e ko R

fo i. = AOS 1 S 47rR toki Xw -S 7 (4r

- fo X dSuiweM 1 CO -flo XV dS 1 -uj(V eko
47-rR ik2 1)4r

f2 I4f 1 0R7r

O=~2X d 1:~se ik R VfdWIVJeki
4frR fl2XI5 1  V 4rR

-5l2X dSMiXV( 4 eiR h+2 X 1 dSiA( j k 4 R

+4 2 XVfdS2 W - j2) e4ikR (A.56)
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The desired approach at this point in the derivation is to change these three

integro-differential equations in the three unknown surface current densities into a ma-

trix equation which can be solved using inversion techniques. To this end, the method

of moments will be applied using basis functions and a testing procedure developed by

Rao, et al [81]. Now the basis functions [81] are
N

7 EV7. w) (A.57)

N'HI(I) Kn-n M .7, (A.58)
n= 1

N"
72 (e) L r,e,7,,,( W) (A.59)

where n and n' are defined over the surface of the coating, and n" is defined over the

surface of the perfect conductor (see Figure 3.1). Furthermore (see Figure 3.5),

2A-p +; einT +

7n(W) --J - P-; f in T; (A.60)
2A; n

and 
0; otherwise

( I -,in T+

V' = _7n ' in T;- (A.61)
1 0; otherwise.

'5 Substituting these basis functions into (A.54), (A.55), and (A.56) yields

f cikoR f eiko R

hoX +i,-o0X dSI' K.,7.,( ) 'V)+o f dS, ,i(#)V (4--# ))
+f o x/s dS0iwL,7J,(€) 4~R -4 R 47rR

ho x dSjiwtJn ) ho X-V ,
" dS1 iW(VI -() 4(6) R

" ho / dSKni7n1 (?') X ' etkOR )+ fzo X dn7(f)X V(ek

2

+ ho XV dS2wjLnI*#(V l) eetki

hX S jU('.-Ln-'7n .. (W))-I (A.62)
5S2 47rR

.,.
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= - e" etk°R "4/ ,rlR i

o x ,i = -so x d S I fI , (7, ( ) x V '( 4 -R )  - fz o x d SJI, 7 , (f ) x V ' ( e i k R

/S '7 ___.o ___EO(l '°

-io x S dSliwcoKn,7n,(W) 4-- -no x V S1dS,'1 0 - .  ,,,W)) 4j7rR

IS eik, R IS ibE - ik, R

-lo X dSjiweKj, Wn() AOr Xo V dS1-k2 (V's "Kn,7n'(W)) 4er

is1  47rR JSI 47rR

+ X dS 2L.n,,(f) x v 4--R) (A.63)

0 2 14rR
-h2 X- dS iAInW)eik R " h2 X" S W V-I~ ,) eik R

+ fZ2 x dSiKnfn(f) x V'("--) + f12 X dS2 iwj4LnI7i (fl) 4R

+ ft2 XV fS dS 2  (V.L,,7n,, (f)) 4R (A.64)
S2

By using Galerkin's method, where the weighting function equals the basis func-

tion, and forming the inner product which is defined as

< 7,g >= fs dsT.g (A.65)

we get functions of the form

< Einc,fm >=< A,7. > + < 70,7m > (A.66)

By the vector identity V. (.A) = A. V-0 + OV A, the second term in (A.66) can be

rewritten as

< V'7m >= dSV" (07,m) - dS(V 7,,)" (A.67)

By the two-dimensional divergence theorem, fs dSV -A = C d A.f , the first term in

(A.67) vanishes due to the fact that the normal component of fm (7) at the edges of S

is zero. Using (A.61), the remaining integral in (A.67) is approximated as follows:
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fdS ((Va.7m) Im [+ dS - -A1 I st

SM[C( + ) - (A.68)

where the average of t over each triangle is approximated by the value of t at the

triangle centroid. Similarly,

-+n 1 in( ) n
<{~cjm7>=1m[2 ITf dS{E'nc}+;

LM Yifm+ IM cM;)P (A .69)

Using the approach outlined above, (A.62) becomes (with Em = T (f ) and

R= - l and where m is defined over the surface of the coating)

Pmm+ Ac.m +mX X+m + -6, §n (A70)
[ m 2m 22 mn-inn] (A.70)

where

--+ - ds weik°Rl / s eikR*" Amn = -f S, iwo,,n~n(f1I) -- a'c t~~g4im

+ fdSiKnfn,(i") X VIC + 1 SKn,'7,(f) X v'(
47rRm 4r:

ik, R*

+ dS2iwuL,,n 1 Wi) e in (A.71)

and

SfS iwj"o (V7 V eik° R!

oiwls ik, R'-, , (V's • I7,,(e-)) --
+ks ikR(V',. n ,, )) -. (A.72)

42 ""rR
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Similarly, (A.63) becomes (with -H:mi = ffi.,(d') and R::, = 'I - F'I and where m'

is defined over the surface of the coating)

[H-+PI +m 1 i -

M- 6]C ,[Bm, Mt+W' Pm' * + (,n - E),n] (A.73)
Sm1.1 '2 2 2nj Mm ' 2 Vt mn

where

Bmin~i = R*, jk, R~
dSlInfn(i') X VC L- d~~~) X VIOe

sl ~471*Rmi 4rR

f - ikoR*'ekR
fdSjiwiEOKn7IfW() 4if~ - fdSiweKnsfn(e) 1

Isf dS2Ln-7If') x V( k 42Rm (A.74)

and

= fd WOEO e ~f 1 s)

- dS- -(V I7n )

2 2

ikc 1 R*
± A d 1We i~~? e "

fmg -S )V n n T(.5

2 2n"

SiwLf 1 i) 47rR:"

~~~~~k % , t 5 . . .
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and

ikIR:"

min fdS, (V'a *Inf))4lre ,

'51 4 7rRm:,,

-i---e (A.78)

* Substituting (A.71) and (A.72), (A.70) becomes

+i[~~ +?: in ~ ikoR+

IF- JT + 61 =f I"~ [AC .~ n
In M~U~- dewz~ #i1j : ~~ii
+ nyj~i ' ~ j J fiwLI2A 4 42RR4

vli n In

(tikR+'kR
Pm 111 4. X~ Ve In$

+ f den I~~( m

JT 42AR+ 4,rR 2A 4rR+

f~ in" R;ikR
+ f dfI Kn, Lni #+- x" }'e' fKI'A l

2A n" 4rRM ' An 7R

+ ~ f ~ ~ o +fw4Ll In- Pn±cR-
'~~~~2A'n 4rRM T"1 Af 7R

17k 4IM Lj t eikR e ik earn
TZ %WAR InfAAk 44rRR

4 J±~ 2(7 ) 4,R TM An Ln4(7r~R

ikR+ikoft

Reragn fA.de i nto a~ mor e pc form itl becomes n)

In~P ) eiiR i i koR

'nIL 2m~ rn 2_ _mn d
iwA JTn,, RJMm nekR

Inf dlp.io P
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r ~ m f jW1Aik R Iminp d w e eik, R!

+I 47r 4A: I R 7w

I min' Acj X V j1 1 ekoR"

+ 4-7 4r 4TA Pn m 7:, no

-:I l n " f ikR
to d?'-# I. (Ae

4xw Amin" J T k RI

Substituting (A.74) and (A.75), (A.73) becomes

mimi2 2]lm2lJ 2Ak~ 47R

F ikciR+, kR

-fT, d?In~ A± XVl(e f dfi E. ko, i
2A ~ 4lrR+, - T fie ' n 47rR;:,

* ~~~~n JTd'wK'~,Z ikR+t JT* < '(esl+
4 dew~,I-n + 4F'LnI RmVi

m' f J ,T n on, r I M
di+11-A xVl~ dfRIn±~V~

2 T lJ±(L T 2An 47rR, 2A± n 4irR,

fT ~ioR i ek,~1 ~e'~ R,

2Aifo~, An -,R~ - f drtiw fK n A Pno 4rR -

+ f nl ITn" X V, (e
TAih 41rR-1M

%eikoR,+ ih R Ii
tJT±,kon ±1 4xrR-, T k 47rR.+,fJ(.i

Rearranging (A.81) into a more compact form, it becomes

ion' [H ~-,-
2m 2
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+1[ mln -c± d'A ,ikoR±

+ 1~ -Irn 4In ' ,~ R . 4rjt

+ I'ni.c 7 d?#± ex

'T K ,'r±- >d '( m dfiwis~' -

-c1 - nn'

r dfiW4E ~ p -ml' k i ,l' ' eik R, I
2Kl fA± P VIfe

+ J f~Ln in" - ± , Vl__e__n

+7 r 7," n"- Ing

Subtittn (A77 emd (A. [) (A.76) becomes

+ LnA± C 4kR R+,,
2 ~ A 4iR, J± 7rM1

r fik R -
-eiA~ _SWI i , e in" di Ki!± ,n,'" Xi1 i V '(e

T. r +~I(-T -± n,(A

ir~ FA 4A i" r ~R-, 7wk d

+ f iAI [n e ~ , V( d i"nl±in e

fJ72± R-,, 'J-+, : -7R

[fiwis In" -c - _f______(A83

+ k2' 4 4A Pm 7± dTr k2
fT,:t I Ml#I ;i 41Rml
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-i 'm'n" iklR*,

47rwe A::## 4"): R .j

By using the fact that

VI(CiR t - 1-ikR± ei;Ri A.5

Rm (R±,8)3

where R± =-f - f'I, (A.80) becomes

Im[E-+ Pcn+ +W
2 2

r W/.L0 Imin C±ekR! i ik0 Ri
44An± 'n Pl 47rwco Ak 7 rm

[iwJsi4~ ["I ± i' niR i lmlnJ d eik, Rt
4irl ± ek, Ri ±

172* x (e < - f')(1 - ik koR:

[47r 4A:, I 72 mj'T7±
n It

+J~ 1W/ dfm#n" x (fn - ) 1 k :R ekR
+Lnu'T 

m Rn7 ~~ 72 "

11I ' i R ":

± i *mnn" d?' ei Ji (A.86)
4lrwc R, A~,

Similarly, (A.82) becomes

tM m 2 M2

In ~ 1 ln f x ( f' )(1 t-koR±,e n_1

In A [ mn -~d' ? (R±,) 3J[ ml ~ fT. dp MC

+I WIIml -c± d ± f 'Z f')( - tkR± 1 -

Pm'I iIE 1,k 0 R f l ± imL' 172* , eikR
47r 4A: I n4R, 4irwis0 A±, kn

T± -n

.~no no V
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Wetm'in'C± /T ,dneikR ,!ikR*,

d¢nil

[Kn 1P Ulm"L: eikIR - - k RF14= -- npm'" dv n 
4- m"1v m

47r A n' 47rw A ,  RJ

ikR*,,

Im I 'n"-c± (A.87

+Ln,,Lm"On , --- x (i;J - ¢)(1 -ikiRR,,) ' :

1 m"1 n [ I.eklri 1-

47 dr7 , , (Rm±,)3 A7

and (A.84) becomes

[W1 ' Im,,In C± fTdPeik, :'  i l ,,l, eikR±.
5,,1, =In A 4--flp ",± + 4 ;, T de ±

written in the foloinfrm

'1 m' ') " ( € ,"+Kn, 4r----------PM" dr Pn, x (F -

L 47r _ZA-- '-m "7 dr Pn~,

/ ~ e ik , ±

-it,,,, dee .R (A.88)
47rw jAn, Wt RM"1

Equations (A.86), (A.87), and (A.88) yield a system of equations which can be

written in the following form:

IM(+.[P+,. + . ] +., P.,- z , ,z ]
Iml -H~, CZm,,- z, ( CZ6 (A.89)i!~~I z.. , .,, ,.I, , L ,

This equation has the form of V Z -I where V represents the incident electric and
magnetic field excitation vector at the boundary surfaces. I represents the unknown

A

electric and magnetic surface current coefficients, and Z represents the interaction ma-

trix for all the triangular patches used to model the surfaces. The unknown surface

current coefficients can be found by inverting the Z-matrix and multiplying the excita-

tion vector by the inverted Z-matrix. The Z-matrix can now be written as

CZ4 CZ5 CZ6 (A.90)::~C g7 C Z8 C zg

~where the individual elements are
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4~r4A m  n~iw47r..~ JT, A P L 4rw .T m 1

CZ2n = ,- - ioR

47 4A f
CZ4~i~ TZ'l _

CZ2 Imn, df#±$X -f F)(1 - ikoR) R ) 3 J

m' m n n
m47rR4A3 (mAT94)

4T-7 r TAnmsI 3

[iw Wmim'n' eik, R* -i Imn 1 f 'lR

4iM -A Pm'f d' pZ, R- ± 4 irw ,km-- I(A i'.93)

CZ6= Imlin~ f* df'#± x cm - )(1- eR, 'ioi

+ m "i JT*Xf~-)1-kR ,) k (A.94)

ikoR C in"R

i4E Imi' C±

m n

47 47rw...-ito- . -%~*. .
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-i 1molin" 'k .. ekR*,

IT ' e -" (A.99)

Now to satisfy duality, CZ2 = -CZ4. Further, to satisfy reciprocity, CZ2-

-CZ4 T, 0Z3 = CZ7T, and CZ6 = -CZ8T. Multiplying (A.88) by -1 gives

Ur" =1 rI, fm4 c di f eiklR, V m' eiklR*,
T4r 4 A -:, IT dR±, 47rwe An' IT$

me

1 r 1 'mn' -( JT, 3?1 ~~ - - *

eik, R*

+ Ln"' =W/ nmt"~[47r i drpll in"' R

no mo

JT* e I (A.100)
4Zrwf A±. f7,, "

and therefore,

*~~~iR SW~lklnc 1 m'ikR*FWI I di' e Moo" - ____~ f e In"
CZ7 - inM" dp I- de -I-- Ai.101)L47r 4AnF JT, i, 47rwE EAn R It

CZ8 1 ImI'XIfd'±x(c - F)1-,±, e ikRI (A.l10)
CZ 47r 4A~l no ~ (iimi (R±,, )3J'

E -W A~ Pm"I " JT± Moo~,

CZ =mln f detkrng 1eA13
TA-- JT- dr-nil

Thus, the system of equations becomes

~+F. =(zmmln Zrn'n' Zm'n)(Kn) (A.104)
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where now OZi CZ1T, CZ2 = -CZ4T, CMZ= CW7T 0Z5 = CZ5T, CZ6 = -CZ8T,

and CZ9 - CZ9T. Finally, multiplying the middle set of equations by -1 yields a

symmetric Z-matrix:

[E-+ - r+ +CZi CZ2 CZ3\ (Int
(4mVimg ~ Hmt =CZ4 CZ5 CZ6 IKn'i. Al

In" 2 CZ7 CZ8 CZ9 J\LnftJ
* where the individual elements are

i~r ZA1mJT R± 47rw,,o AfT,: Rm

+ W1 - I mm ..c± fT df'p-L eik**! 4 Im de -p-, j (A.106)

-Z2 fmn' ik0 R!
CZ2 ~ ~ -= F 12* iX (7cn±-')(1 -ikoR -)'R) 3

+Z - -I-/. 1Mm df#' X e( R ±4rfmJ~, 1 8

JT ,' (R±,)3J

fk R ikzR* ±

CZ5 - [iW14 IMIn'f .C±* e dfn~eko -i Im'n' Jf d,,e k * 1t
4ir44 m' Rn 47rwes A% , R,* r rA-R

+ M~ AcZm' ]i f', Ri f dI(A.109)

1 1' Pik, R ,:,
+r6 fiW 'in c eik, e! m mln

4,Z6 4A, m'p-* x - r)(1 - ik, R±,)(R)3JA11)

* ~7 %i no 'n~ (R±,)3 ~ ~~
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r Wmint -c d ikR.*J -iejik, ill
CZ7 - I4r Pm# J T f I d7'S A.112)

rZ8 1 , - - Cik, -n] (A. 113)
47r 4A±, M JT (±

r ~ik , R*
i IM,,lln,,[ ia"]

+4 rft"t ., 4,. m.,,

4?r" d fl e 1 " • (A.114)

A symmetric matrix can be inverted by techniques such as border inversion or LU

decomposition. For border inversion the entire matrix does not have to reside in core

memory at the same time. This can be important for coated targets of any appreciable

dimension with respect to wavelength since the size of the Z-matrix will be very large.

Equations (A.106) through (A.114) represent the symmetric Z-matrix as computed by

program EFIE2C.FOR (see Appendix B).

A.3 Partially Coated Perfect Conductor

This section contains the derivation of the equations for the interaction matrix

of a partially coated perfect conductor. The derivation of the governing equations

for this interaction matrix follows the same approach as that presented above for the

completely coated perfect conductor. Refer to Figure 3.3 as a reference for the following

derivation.

* Using Huygens' principle (see equation 3.1) in Region 0:

Po= E o + f,

= Ein + dSI {iwioGo" J, - V x Go •M }

+ f dS2{iWIAo=o. J2 } (A.115)
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and

NO = -i. + -F.

= Hinc + dS,{iweoGo. M + V x Go" J 1}
S1

+ fdS {V x Go" -J2}. (A.116)

Using Huygens' principle in Region 1:

El -- dSl{iwt"Gi -JIi - V X i + I}+ dS3 {iwU1 " J 3 } (A.117)
s s3

and

fI = dS{iw . M, + V x U, .J} + / dS 3 {V X Z1 J 3}. (A.118)
i $3

Applying the boundary conditions at surface SI:

iio x Eo = ao X El. (A.119)

Therefore, at S

ho X E,.c + to X 1sI dS,{iwj~o-o. 1 -V Go " M1 + foX )sj dS2 {iwsoGo• J 2 }

ho x fIdS,{iwihG, 1J - V x Gi -M}

+ lo x fs3 dSa{iwsG J 3}. (A.120)

Also at S,

fto x Ho = ho x H, (A.121)

and, therefore, at S,
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Lto X Fi+fto X jS dSj{iweo~o - MI+ V x Go -Jj1 }+ io Xj)s dS2 {V XUO.-j72 1

r I - I

=ho X]f dSi{iw&~i - M' + V X U1 -7 1}

+hofS dSs,{V x G, J731 (A.122)

Now, at surface S2

fi2 X E0 = 0. (A.123)

Therefore, at S2

f42 X inc + f 2 X jS dSi {iwuso=o -J - VX o -V} +f&2 X JS dS2 {iwJAOZ0 *72} = 0.
S 2  (A.124)

Now, at surface 53

f13 X Y, =0. (A.125)

Therefore, at 53

hl3 X fS dS, {iwsi=C -Y - V X 0 1 . 1 + hi3 X f5 dS3 {iw1 .sZ~j 73} 0. (A.126)

This yields four equations in four unknowns: J1 ,M 1 ,J 2 , J3.

Using equations (A.8) and (A.10), equation (A.120) becomes

40 X Yin.,= -fI 0 X fS dS,{iwuso~o JI - V x Go Mi}

-l n0  )sf dS2{iWAOGo -J2 )

hn0 xf dSj{iwjzGj *J, - V X C1  M1

+ ho0 X fs dS3{iwsGI J3} (A.127)

and equation (A.122) becomes
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Ao x H = -io x j dSI{iwcoGo " M, + {V x o 71}

-no x dS2 V x Go.J 2 }
= 2

-no x dS {iwc=G • M + V x i• J }

+ no x dS 3{V x G1 . } (A.128)
)3

and equation (A.124) becomes

hl2 X Einc = -h2 X 151 dSl{iwjoGo. JI- V x Go -MI - 12 x s dS 2 {iWloZo - J 2 }

(A.129)

and equation (A.126) becomes

O=-n-3X dS{iwj-G1 "J1 - V X G1 "M 1 } + 3 x j dS3 {iwj l"J 3 }. (A.130)

Equations (A.127) through (A.130) are of the form

L 1 1 J1 + L 12 M 1V + LI3 J2 + L14" J 3 = o x Eic (A.131)

L 2 1 .J 1 + L 22 M 1 + L 23 J 2 + L 24 J 3 = 4 xHin (A.132)

L 3 1 " 71 + L32 " M1 + L 33 J 2 + L 34 73 = f&2 x Ein. (A.133)

L 4 1 •J1 + L 4 2 " M + L 4 3 " J2 + L 4 4 J 3  6 (A.134)

or the more compact form

L21 L 22 L 23 L2 4  M, h |o x Hinc (A.135)/L31 L32 L33 L34 J2 h2XE"n
\L41 L42 L43 L44 J3 0n .

)k. i
/

* -S ~ *S -.5
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where

LI = -ho x fS dSjiw{A°oo + tG1}. (A.136)

L12 = io xf dSf{V x Go + V x Ci}" (A.137)

L 13 = -no x 152 dS 2 {iWj oGo}. (A.138)

L14 = A~O X f3 dS3 fiwas~i} (A.139)

L1= _o X fS dSi{V x Go + V X } (A. 140)

L2= -ilo X LS dSjiw{co~o + J71}- (A.141)
S2

S.

L231 = -Ao x dSl{V x 1Go} (A.144)

L2= ii2 x dS,{V x Go). (A.145)

I

= s - 2~ x I dSli{V o~ x Go}- (A.145)

L33 = -ft 2 x f dS2 {iwj ox o}. (A.146)

S2

L 3 4 = (A.147)

'4 = f&3 X 1 dS{iwjiG}" (A.148)

***~~'.* ~*~* -.... .a,'.. *. ...
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L42 = js X/_ dSi{V x =G}" (A.149)

L43 = 0(A.150)

L44 = A,3 x j dS3{iwu=,} (A.151)

Note that L1 2 = -L2 1 and if E and A are interchanged L11 = L 22 . Further, if

surfaces S1 and S2 are interchanged L13 = L3 1 and L23 = -L3 2. Also, if surfaces S,

and S3 are interchanged L 24 = L42 and L1 4 = -L 4 1. Finally, this approach corresponds

to the electric field integral equation (EFIE) approach discussed by Rao, Wilton, and

Glisson [81]. If the boundary conditions on the tangential magnetic field at the surface

of the perfect conductors had been used, this would correspond to the magnetic field

integral equation (MFIE) approach, and if a weighted sum of the EFIE and MFIE

had been "sed, this would correspond to the combined field integral equation (CFIE)

approach [70,120].

Now rewriting (A.135) as four distinct equations, as done previously for the

completely coated perfect conductor, gives

_ eikoR i0 (v. e7kR

fio X -Ein. -fio X dS, iw~o47 R j o X V dS, kj2- (4.71
S 4irR lS J1 ) 47rR

io X d s , , -J , ik ,R - n o x V d ,1 ! -A (V .j ) 4i -, -

47rR 4r

eikoR eik, R
+ ,4o x dSM 1 X vIT- ) + ^0 x dS1 M '(4 -))s'I rR~ A f I )7r

ho x dS2iW o72 eR _ ho x V dS2  (V k- 72) 4R

fS47rR )2 0 2 47rR

,w~u3 ek, jiW )ek. R
+ ho x dS 3iw J4-- + o x V dS3 k(2 J) (A.152)

s3 is 3  47rR

fio X Fin,= -fto x dS1J1 x V 4-- -to x dSJjj x 4rR

- oI 4rR oV I 47rR

-lo X fdSjiwfe0 M1 ekoR _ oX S iWCO( escR
fS47rR 0S1 j- 47rR
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-ik°R iw- eikiR

A2 dJ 2 x13 eiki

h= - X dSjiW oJx 4rR h xV dS -k2 ( 'V 47rR "
1 is I'I

f d~ t'ikoR f eikR
X2 XS7 Xn 2I~ +ir ho XV dS 17, x~~ V( (A.) 153)

+ ~~52) - x dS2 wj4oJ 2 4rR

- ek × (v.7)eioA0 - ikoR

flX/dSk 4R (A.154) ":

i2 X 21 - ) n (V. 7) -V

4rR k2 47rR

fs0 R" e i  RR

+ Xl x dS1M1 x VI(e4 -R)-_ "-

+ 3X f dS3 iwuJ3 4-- + f3 XV dS 3 72)- ( 4) (A.154)

where R = -

The desired approach at this point in the derivation is to change these four .

integro-differential equations in the four unknown surface current densities into a matrix,,-

equation which can be solved using inversion techniques. To this end the method of :

moments will be applied using the basis functions as defined previously in equations

(A.60) anid (A.61). Now the basis functions [81] are

N

"l 1^ X r S V XV(4

",') X- n&3 XV-n,(() (A.155)
i:- R,,-,..-..

)s3 IN"

where R

Th deie apocha hi onti-hedrvainist hag h.efu

ine-difrea eqain intefu nnw ufc urn este noamti
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note = 1

where n and n' are defined over the surface of the coating, n" is defined over the

surface of the exposed perfect conductor, and n... is defined over the surface of the

coated perfect conductor (see Figure 3.3).

Substituting these basis functions into (A.152) through (A.155) yields

42rR i (V1

-i Xo En -fX dSiwuo~soL (e) noX(VJ) e - (V InikoV
S4rR is 2 4rR

+ik R1 xW eik R7 4

+h9 o XV dS iwAI("Zr _ lR (A.160)M -Inn r

s 1 ir

hoTT ~w~LOR7fd2iA eik

x ~- -o xf ,ii 7nr W '() - i 1o X-i2 dlft(V' xnn V W))
)247rR S2 47rR

+ ho X d$ liwu~o ...7n ... (,) -'k R 1 S V ~ f 1 (e) lo

)347rR 4'r

f u, ( eik R
-~~~ Pn .. fSL~,(' nx V'(f)if- 47rR

ikR (A.161
hO~~~ XHn f x dSjPIii7n,(f) XV'(- -4o7rRdjn~V/ V

Is, 4rR 2 i 47rR

io ''i ds iw Eo~ -, 7n,. W)ekR i XV diI , V .fn()
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+ f2 x dSiK,7,(f') x V'( R) -R 2 x dS 2iwjzoLnI1 ",,,() 47rRi k,

-h2 X V dS 2"--wo (V', Ln" 7n"(V/)) 4 R(A. 16 2)

k 2

fS47rR '' 4rR
0O=- Xs ~i lf(Mel vf " w . etklR

A ,~ 2/2n~7~ 4irR -713 X dS 1 " -±2(V'. 17(f')) 47R

1O - -I" )i~l R e kiR" A3 X dS, g.,n.(f') X VI( + +h3 x dSsiwUPn,,,fn,,,t(V') 4
--4r IS3  4rR

+S I k2 ( Pnl" 1(k) 47rR (A.163)
S3

By using Galerkin's method, where the weighting function equals the basis func-

tion, and forming the inner product, which is defined as

< 7,g >= f dST. (A. 164)

we again get functions of the form

< Ein.,f, >=< ;,7,., > + < V,7. > (A.165)

Following the same approach as previously discussed for the completely coated perfect

conductor, (A.160) becomes (with -- = and R F'j and where m

is defined over the surface of the coating)

tM  m -M- m - 1"' mA-mn-!: +;n 6m + IDmn ID m (A.166)
2 2 2+2

where

A --- etkoR, eik, R*

A± f dSjiwisoIn~f) dSjiWA4nfn(f')
4irRM± s 47rR"

dS1 Kn, 7n1(/) × VI( eik-R + dSKnln,(f') X V'( r )

47rRm fS 47rR

/ dS2 iwjsoLrII7n,,(r') + ftkdSR iwyP.,. (A.167)
is 2  4ir R4 (6

Nm
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and

eika R

M,, f dS iw4 (VIS
1

1.fl
0S 47rRM±

- eik, R±

f~ iwo ikoRlj

- s 2  2 aV -"7~~))rR±

+ /. dS.3 W4 (V',.-P,"nj 1 1 1 ()) e ik, Ri (A.168)
1 4 7r Rm:

Similarly, (A.161) becomes (with Hm, = H!j,,,(fZ) and R±, = f'I and where

m' is defined over the surface of the coating)

_+-C- -C+ -C-

Imp [H~m,.+ R . I4mp Frn + +Bmrn n F + E Wn m~ (A.169)

where 2 m

dSI~~(')x VI( e .n - dS 1Infn(f') x VI(eR±
-m' f -S IeioRn , fi")~

Si~KIf 1 r 4 I1 SiwK~fl 47rR±

*e f ek1 ~

f]S i~~n , W)~-9.V dS Ce~'

'47rR± = k2  8 4 r~m

+ f dS 1n .. (7V,, (A. 170)
*1 4rR ,

and. - .-.-..
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Also, (A.,162) becomes (with R -,, = I , - f' and where m" is defined over the surface

of the exposed perfect conductor)

LIi + = - m ' m,-l ,,I ] (A.172)

2 n 2 m n]

where

f ,.k ik0 R*II

Cm"n = dSiWIIOIn(f) - + dSKn, n,(f') x V'(e )
fS1  I7R, fS 4 7rRmuit

ikoR*OO

-dS2iwuoL f'" e)o" (A.173)
% fS2  47rR:m,,

and

±fs_iw s 0  Cm° e '

4ikoR,,
-- S o 47r v ekR:"~l

iWAo e MdS2 (-oV ' . Ln,, 7n,, (eF) ) 4 ~,.(A.174)

k22  
471*RuI#

Finally, (A.163) becomes (with Rmh,,, = f - ' and where m" is defined over the

surface of the coated perfect conductor)

06,,,= ,,,-+,,.n - +V. + 7,, -"fn " - +""]n (A. 15
S2 2 M

where

.5 "=in,, -L dSiwlAInI (') - +f dSiK.,fn,(f') X V(k 1 Ri,,,
• ~, is 4 KRm.,t

(e) eRk R±

+ f dSaiwMP,,,,#,,I,(#) e (A. 176)

and
A

"A ,, " " " " " " " " " ' " " " ' '"""" " " " " ' " " -- ""' ''' "" ' " " ' ' ' """ " " 
' "

" " ' ' 
"
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A' tn fdS, .w IJ,(i)etlR,

ik, R*
+ fdS3 i*** (V' ,, nl fl)e ' A17

fS3 47rRmLior(.17

Substituting (A.167) and (A.168), (A.166) becomes

f e ik o R l i lkn_ _ _ _

i* * ]7woRL L
iwi 1m~n -c± Cael Rn* i 1m~n eik, Ri

+In --PM *I # -jl ± -;F f'IL47r4iAn )Tz n 41rwe AfTz RJ

±Kn' 1[!#n, . f dl+#. ,eikoRl

r M koRn I IAn
+Knl~ ~ 11rllC le"R

[ 1 Im n T. nkR

L4?r4A~?nJT,

Ln U rI.f f~ 12 d7'#±, ekoRl I," f eikoR!
4', 47r 4 A±PIm 4FWico A± R A

IJ 
M 

o
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iwe lm'1 p."I., C.-+ L f i 1
+Kdr T m dr

4L " M ' n 4 ArwA-; '
T* R

+ L n .' 1 I , d fL , x e
"iL - 47r 4A 'n''-'" drz pn,, Xn

+Pl'[ 1 P,,'l, Jc+ d _+ -- x)J. (A.1791+Pn,,, I m IA C±-p, . dr ,,,, x V i( Rif(.19

Substituting (A.173) and (A.174), (A.172) becomes

2 2
[koR eikoRL of

il 7 TZm I it p -d
d4r 4A TR m± 47rweo An R,,

4 7r 4A74 I, " d" dr ±

+Ln" ofm fW df'p± ikjt,
47r 4A f. n o

i IrnIntsk R* 1lm~ dfn" /T 0 d e °R ' '  (A.180)

47rwo A,,R iT, ,,

Substituting (A.176) and (A.177), (A.175) becomes

Jik, R ik RrImU 11= In 1WA m"'n P~f [ dilpg eik of ii Irn"' dF etk Rno,

L 4r 4~ P"' TZ n ,, 47rwe7iJT 4,I
, + K, ,l m'4 n' ,-c--'" ' R V ,,,

47" 4An, m n R±11
[k R*,,,Po' "n d r Pn' -

+17 L 4-, 4An. I ,,'"

TI
1 1 1

o,,

.d' R± . (A.181)

By using (A.85), equations (A.178) through (A.181) yield a system of equations

which can be written in the following form:

.S ' .. . t ****j'' *-. ** *
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Lm [E W - .r,;- Zmn Zmn' Zmn" Zn"'1 I, , , + 1 , -r] - , z.n ..o, zMo., zMo,,, Kn,
' m 2 + 2 ZM,, Zm,,i Zm1,ni, Zm'"n'" P1'"

(A.182)

This equation has the form of V = Z. I where V represents the incident electric and

magnetic field excitation vector at the boundary surfaces. 7 represents the unknown

electric and magnetic surface current coefficients, and Z represents the interaction ma-

trix for all the triangular patches used to model the surfaces. The unknown surface

current coefficients can be found by inverting the Z-matrix and multiplying the excita-

tion vector by the inverted Z-matrix. The Z-matrix can now be written as

CZ1 CZ2 CZ3 CZ4
CZ5 CZ6 CZ7 CZ8
CZ9 CZ1O CZ11 CZ12I (A.183)
CZ13 CZ14 CZ15 CZ16)

where the individual elements are

cz= [iW14Oimin....c± f# ek i Iin dF eiko~RniwlTo nri R± ~ + -d

474A± m n R 47rwco AJ
rW ___ ± f dfp ik, RI mn d ,R A14

+ 4/.S 4mm "  d - +  mA eik.R (A.184)

++"[I 4'.l J+ I ++++S

CZ2 = L-1 n-' .J dr p, x (2 -)(1 - iko R -
47 4A , ,,o T:, _,+ 'R -

+ flm-- •X (ffc F)(1 ikR:)L) (A.185)
4'/4r 'm - -"°__

i4A rnn1,±f d. ikoR±*CZ3 -- iw~o lmln~r. I. _
4= [4r 

4A',,, dr nit' RA

4irw0 A±~n"fT* dri C Rk(A.186)

|"AR
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CZ4 - r W mn' f dirp, ekR
47r 4AjOO Pm

± -i IliIII f r- eiRn 1A (A. 187)
42rwe A:1:11,, JT

r 1 1 m 1 n...~ ~ ~ikoR*,1

+Z 1±I p'L i J d?' x -fc - ikoR±,)e

CZ-- m m- -Tm1 n __

ikR io*

4WCr 4All, Pm' df'pl, -p--
47rw V.' 7rAO n

iikoRR,

CZ = w Im'l C± fT df ± e'( - ikR, (m)] A1o

4r 4A ] d?'n1 n fo kw- ?)1
V." iklmi) (Rf) ikR* (A.189 )

CZ9-~ik -- R*kR

L4r 4A~ o' f d: r m

i 1,11 ikkoR*,

47re 4A JTF (m±) (A.191)

47r A-Pm"# n
-i~nET4,

* Vm I f k~ t l( 
.1 2

47WS .
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4rweo A fot t de°- R±11 (A.194)

CZ12 = or," nit (A.195)

CZ13= ,, -ik"R*

47r -'- PmT-

n In42woi Ads JT ' d"' (A.196)

CZ14 = m f drAO, x, - e)(1 - ikiR

IITn

CZ15 = O"o,," (A.198)

C Z 1 6 - [ " 4 A ,, f d efi ±  e tik l"-o-

47r -TA m 72 n. (i.)

4 r +Rmiiiw -±, 4,Id ±0 A19

Now to satisfy duality, CZ2 = -CZ5. Further, to satisfy reciprocity, CZ2 =

-CZ5 T , CZ3 = CZ9T, CZ4 = CZ13 T , CZ7 = -CZ10 T, CZ8 = -CZ14 T , and CZ12 =

CZ15 T . Multiplying the second and fourth sets of equations by -1 yields a symmetric

Z-matrix:

Im~ ~ ~ [-~ .2CZ1 CZ2 CZ3 CZ4 In
4,,, [- + R,, , ! , ] CZ5 CZ6 CZ7 CZ8 K

I M, FEm+, LP7 2 In CZ9 CZ10 CZ11 CZ12 nI In 2 CZ13 CZ14 CZ15 CZ16) P,,,

(A.200)

where the individual elements are

EiWi.S0 1m1n " f ± eikRI i tmin f eikoRi'CZ1 =c 4 -p f dr'P ei -k47 4A± Rm 4rweo0 A I
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+ [ pm dflo± (- n(~kR) n
L ~ p nR )3J (A.201)

CZ3 - [1 iO min - c df ± X kormc )1-io

+ 4I we0n ,, ,ik jll

77- 'm d"' f X (k1 RiR±

4rw An nJ (±) (A.202)

S ~CZ3= [i J T ± di'n* C± -ik ?'( knrI( ±

4r 4Ano Jm~ 2ws ~ T

±m n 1f io~ (A.203E 7c 4 A , JTRlrm AI

r mmn"l ,e feikRR

= ~j m I~ df.% el f '( -~om ~ (A.204)

[urn Fik R
CZ8 1-- di'p± x - ') - ikR ,) e ](A28

47r A±n m (R) 3

L -..
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CZ9= 4--- r,
/T _ikoR±:: i4wlso m Rn.,

4-7 4rA P" I, dR-

/mi.f eiko R ",-'

dera" d 2- (A.209)

47rwfo ;;'If-  I ,.
CZ1O 2 , x - e)(1 ikoR,,) (A.210)

Z 13=L47r 4A---L m '  n RM (±,,,

[iW4 0 mln" I 'ikoR

S•A P'" n 18

4 Im., n+ de R± (A.211)
4lrwEo A~n JT

C Z12 = ~iii(A.212)

1in in"'R

-i Im"'1,n df' ekRig1 (A.213)
A47r , T RM,,'

ni m""' -. c±ik, R*,,
CZ14= illinii*d'3 x e - kRII(A.214)

C Z15 = ~i~i(A.215)

ikR,,R,nl

Equations (A.201) through (A.216) represent the symmetric Z-matrix as computed by ,

program EFIE2PC.FOR (see Appendices B and D).
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Appendix B

DESCRIPTION OF COMPUTER PROGRAMS

B.1 Introduction

The electric field integral equation (EFIE) programs are discussed in this ap-

pendix. This set of programs uses the method of moments to calculate the equivalent

electric and magnetic surface currents and the far-field radiation pattern of a user

specified geometrical construction. This geometrical construction is a triangular patch

model of the coated perfect conductor. The user specifies a geometry by creating the

file GMETRY.DAT using the commands outlined in INPUT.DOC. GMETRY.DAT is

the input for the EFIE series of programs. Various output files are generated by these

programs. EFIESR and EFIE5V will generate plots on a graphics terminal. These

plots can be viewed and manipulated in an interactive mode. The source code uses

PENPLOT graphics software.

B.2 Program Description

A brief description of the EFIE files and programs follows:

GMETRY.DAT- a user created file which uses condensed commands to create the

desired geometry. The condensed commands can be found in the

INPUT.DOC file. This file is the input to EFIEl. To view the ge-

ometry created by the GMETRY.DAT commands, run EFIE1 and

rename or copy the output file STORAGE.DAT to RESULT.DAT.

Then run EFIE5V.

EFIE1- translates condensed geometry specifications into EFIE usable

data. Surface modelling by triangular patches.
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INPUT: GMETRY.DAT-condensed geometry specs

OUTPUT: STORAGE.DAT -geometry modelled using triangular

patches

EFIE2C- calculates the "generalized" symmetric Z-matrix of an arbitrary

configuration of completely coated, perfectly conducting surfaces.

Surface modelling is by triangular patches.

INPUT: complex relative permittivity, ER, and permeability, AR.

INPUT: STORAGE.DAT -perfect conductor geometry

INPUT: CSTO RAGE.DAT -coating geometry (generated by EFIE1

and renamed from STORAGE.DAT)

OUTPUT: RESMAT.DAT-Z-matrix

EFIE2PC- calculates the "generalized" symmetric Z-matrix of an arbitrary

configuration of partially coated, perfectly conducting surfaces.

Surface modelling is by triangular patches.

INPUT: complex relative permittivity, ER, and permeability, gR.

INPUT: STORAGE.DAT -coated perfect conductor geometry

INPUT: KSTO RAGE.DAT -exposed perfect conductor geometry

(generated by EFIE1 and renamed from STORAGE.DAT)

INPUT: CSTORAGE.DAT-coating geometry (generated by EFIE1

and renamed from STORAGE.DAT)

OUTPUT: RESMAT.DAT-Z-matrix

EFIE3- inverts the symmetric Z-matrix by border inversion

INPUT: RESMAT.DAT-Z-matrix

OUTPUT: RESMAT.DAT-inverse Z-matrix, Z

EFIE5BC- calculates scattered electromagnetic field, E,, far-field radiation

pattern from the equivalent electric and magnetic surface current

distribution of an arbitrary configuration of completely coated

perfect conductors (triangular patches used to model surfaces).

Current density calculated across edges of triangles. This is an

interactive program.

z? ............, -
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INPUT: RESMAT.DAT-inverse Z-matrix, Z

INPUT: CSTORAGE.DAT-coating geometry

OUTPUT: SPATTERN.DAT-stored far-field radiation pattern

EFIE5PC- calculates scattered electromagnetic field, E,, far-field radiation

pattern from the equivalent electric and magnetic surface current

distribution of an arbitrary configuration of partially coated per-

fect conductors (triangular patches used to model surfaces). Cur-

rent density calculated across edges of triangles. This is an inter-

active program.

INPUT: RESMAT.DAT-inverse Z-matrix, Z

INPUT: CSTORAGE.DAT-coating geometry

INPUT: KSTORAGE.DAT-exposed perfect conductor geometry

OUTPUT: SPATTERN.DAT -stored far-field radiation pattern

EFIE5R- calculates far-field radar cross section (RCS), a, patterns from

the previously stored far-field radiation pattern of an arbitrary

configuration of coated surfaces (triangular patches). This is an

interactive program. Output is plotted on a graphics terminal.

The plotting subroutines called by this program can be found in

PLOTR2.FOR which uses PENPLOT graphics software.

INPUT: RPATTERN.DAT-this file is necessary if user asks pro-

gram to read a previously stored pattern such as SPAT-

TERN.DAT generated by EFIE5B. RPATTERN.DAT is

simply SPATTERN.DAT renamed or copied.

* OUTPUT: far-field RCS plots on a graphics terminal.

OUTPUT: DPATTERN.DAT-user readable file containing the far-

field RCS, a, versus angle data

OUTPUT: HDCOPY.PLT-far-field RCS patterns (user requested)

ready for printing.

EFIE5V- outputs GMETRY.DAT data in user viewable form. The geometry

created by the user can be viewed on graphics terminal. The plot

,..
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produced is a 3-D graphics view of the geometry, and the viewing

angle can be changed. This is an interactive program.

INPUT: RESULT.DAT-renamed or copied STORAGE.DAT or

CSTORAGE.DAT file.

OUTPUT: plots on a graphics terminal.

OUTPUT: HDCOPY.PLT-3-D geometry (user requested) ready for

printing.

HDCOPY.PLT- file containing plots requested by user. They can be viewed on a

graphics terminal or sent to a printer.

B.3 Flowchart of Computer Programs

Figure B.1 is a flowchart of the computer programs described in Section B.2.

It is not a flowchart of the individual computer programs, but a flowchart to show

the progression through the EFIE series of computer programs used to calculate the

desired far-field radar cross section patterns.

:

I.

5 II V.
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EE1 .. Translate user-supplied
EII I condensed geometry specs

completely artially
coated coated

perfect perfect
conductor conductor

EFIE2C OR- EFIE2PC Fill Z-matrix

EFIE3 Invert Z-matrix

EFIEC O EFI5PCFar-field radiation
EFIE5C OR EFIE5PC pattern

EFIE5R Far-field radar cross section

Desired
Otput

Figure B.1. Flowchart of EFIE Computer Programs

"- q- . . - - - - - - . - . .. - . - . ., . - - . . . - '
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Appendix C

SEVEN-POINT NUMERICAL INTEGRATION

OVER TRIANGULAR SUBDOMAINS

C.1 Introduction

To calculate the elements of the interaction matrix, Z-matrix, an integration of

several types of functions over each triangular patch is required as shown in Appendix

A, equations A.106 through A.114 and A.201 through A.216. The integration of these

functions over the triangular patches is accomplished numerically using a quadrature

technique for surface integration over a triangular surface. The following sections of

this appendix discuss the numerical integration of these functions over the triangular

patches.

ikk

C.2 Integration of fTZ df': and R ,es

The integrations of fZ dt' ik ' and fTZ ,,r e are accomplished us-

an JTT - -ae copise s
ing a seven-point numerical integration scheme ove r each triangular patch. When the

source triangle and the observation triangle are the same triangular patch, m = n, and

the singularity in these integrals presents a difficulty. The seven-point numerical inte-

gration scheme used is discussed in Chapter 3 of Kiang's thesis [1241, and will not be

repeated here. Further, Kiang's thesis discusses the effects of various triangular patch

shapes on the computation of the scattering from perfect conductors. The seven-point

numerical integration over the triangular patches is an adaptation of the numerical

quadrature technique discussed in reference [125]. The quadrature values used in the

integration can also be found in Abramowitz and Stegun [126] on page 893. The inte-
'U~~~ k 0~ m ~ - ~ Rm:gration of J df'p -i-- and fTZ dl -T-- are accomplished in subroutine NINT7

:~~~~~~~~~~ T-. -..-- ..- -.-.... *-..-.. . . . . . - .. .-..- -.. . .. .- - ..-. - - . . .-.- -.-:,-,',
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of fortran program EFIE2PC (Appendix D), and the integration of fT* df'p eR

.. , eRi
and fT* dT are accomplished in subroutine NINTTA of EFIE2PC.

C.3 Integration of fT*: df'# x (i - f')(1 - ikoR) (R,,

The integration of fT* dftI x (f - f)(1 - iko ±) i uses a modified
-)u

version of the seven-point numerical integration scheme discussed in Section C.2. Refer

to Figure C.1. Let

Imn deJT×(S - - o . (C.1)

Now, referring to Figure C.1, let

=n - f)(C.2)

where fi =f, F2, f3 in turn. Now

F1 + (f2 -fl) + (F3 -l)n (C.3)

where
A2 (C .4)

and
A 3= A3' 

(C.5)

and An is the area of the nth triangular patch. fI is the vector from the global origin

to vertex 1 of the nth triangular patch. Similarly, f2 and f3 are the vectors from the

global origin to vertices 2 and 3, respectively, of the nth triangular patch.

Substituting C.2 into C.1, Inn becomes

iRj

I. de(e - j) x (7,,± - f)(1 -ikoR) e . (C.6)

Now
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=FCL x f,) + *i X F - F':1x

Therefore, using C.3 in C.7 and C.7 in C.6 yields

]m de' [K2,- X Fj) + Vs - e')Xe (1 - mR

*1= 2A, f 'f d~d'1f~±x j
Jo J

1 eikoR±
+ i - (1 {l+V - koR)+V- i7}(ikR)

2A,,(fz X ?) j f7( - ikoR--

+ 2A, (fi - xCZ X f' 1j- d~d7{( 2 - oR) ia

+ A ( 1  fi)17x (1 - i) eikoj ( -ioR )iiR

+, 2(7 -:') X di ( 1 - i o± e'ddj _ 1 __

2A (fi -7s) x + IA(7 i7 (1 -f i ko

+ 2A, (F, - F~)X (F2 - + dd 2A(7 - xkR - eJ~ C8

Finally,- ml)

Imn~~~ 1= 2A[7xiJ+77){im( 2 iJi( 3 i)J}]m n(C
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where

f e ikoR n

= f fld- dl - ikoR tk (C.11)

f 10 I . ikoR!
the-sfourc dtd t(1 - ik°Rm) (C.12)

A singularity occurs in these integrals when m = n. For m = n, which corresponds to

the source triangle and the observation triangle being the same triangular patch, In

is set equal to zero since

P . dep± x (fra - f)(I - ikoR±m)' (C.13)

yields a vector in the plane of the triangular patch, pc, dotted with a vector perpen-

dicular to the plane of the triangular patch, A± x (fcm - e).

The seven-point numerical integration over the triangular patches is an adap-

tation of the numerical quadrature technique discussed in reference [125]. The values

used in the quadrature integration can also be found in Abramowitz and Stegun [126]

on page 893. The integration of fT* d7'# x (x - 7")(1 - ikoR)' iko R; is accom-

plished in subroutine NINT7B of fortran program EFIE2PC (Appendix D), and the

integration of fT: d7: x (f± -7) (1 - iki R±) ! ."is accomplished in subroutine

NINT7C of EFIE2PC.

IN NO
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observation
triangle

Y" Ir tiangle

source

triangle /A A3

A+A + A ~A2 3 n Z

Figure C1. Source and observation Triangular Patches
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Appendix D

EFIE2PC COMPUTER PROGRAM

This appendix contains the EFIE2PC computer program. The EFIE2C program

discussed in Chapter 3 and Appendix B uses similar logic. The EFIE2PC computer

program is written in the FORTRAN computer language. This program calculates the

elements of the interaction matrix, Z-matrix, for a partially coated perfect conductor

(see Chapter 3). The individual elements of the Z-matrix are computed according

to equations A.201 through A.216 in Appendix A. The Z-matrix elements computed

from each of these equations are calculated in subroutines ZPLPL1 through ZPLPL16

respectively. The PLPL designation is an abbreviation for plate-plate interaction since

triangular patches are used to model the surfaces.

.I . *.* . . *. * *
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C
C EFIE2PC
C
C modified version of EFIE2 to handle PARTIALLY coated perfect conductors
C
C version 1.0 September 1985 MIT
C
C this program calculates the "generalized" impedance matrix of
C of an arbitrary configuration of PARTIALLY COATED conducting surfaces
C
C inverting and multiplying this matrix by an excitation will obtain
C the current distribution and the far field radiation pattern
C
C excitation may be by either plane waves or voltage sources
C
C modelling of the surface is done by triangular patches
C
C surfaces may be multiply connected
C
C input file: STORAGE - geometry for COATED perfect conductor
C input file: CSTORAGE - geometry for coating
C input file: KSTORAGE - geometry for EXPOSED perfect conductor
C output file: RESMAT - Z-matrix
C
C at present 1000 unknowns are permitted
C

PROGRAM CMPUTE
C

INTEGER MNODESMEDGESFACESMWCRDSMUNKNS
INTEGER NNODESaEDGESNFACESNWCRDSNUNKNSNWSEGS
INTEGER JNODESJMGESJFACESJWCRDSJUNKNSJWSEGS
INTEGER KNODESKEDGESKFACESKWCRDSKUNKNSKWSEGS
PARAMETER (MNODES-300)
PARAMETER (MEDGES-900)
PARAMETER (MFACES-60)
PARAMETER (MWCRDS-2)
PARAMETER (MUNKNS-600)

C
INTEGER WIkEPLATESTATE
PARAMETER (wRE-2)
PARAMETER (PLATE-3)

C
COMPLEX JIKN1,JWU14PX14PWE4WE14PX14PWU
COMPLEX CZ(MUNKNSMUNKNS),CV(MUNKNS),CI(MUNKNS)
COMPLEX CCV(MUNKNS),CCI(MUNKNS)
COMPLEX KCV(MUNKNS),KCI(MUNKNS)
REAL PLKNJWU04P,X14PJEJWE04P,X14PJU,X14Pl
REAL DATNOD(4,MNODES),WR(4,MWCRDS)
REAL CDATNOD(4,MNODES),CWR(4,MWCRDS)
REAL KDATNOD(4,MNODES),KWR(4,MWCRDS)
INTEGER NCONN(2MEDGES),kBOUND(6,MFACES)
INTEGER JCONN(2MdEDGES)JBOUND(6,MFACES)
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RNTEER KCONN(2MEDGES),KBOUNDX6MFACES)
* INTEER SEG(4,MWCRDS-1XMAPWUNK(MEDGES+MWCRDS)
* INTEGER SEGJC4,MWCRDS-1),MAUNKJ(MEDGES+MWCRDS)

INTEGER SEGK(4,MWCRDS-1I)MAUNKK(MEDGES+MWCRDS)
C

COMMON/DIMEN/NNODESNEDGES,NFACES
COMMON/DIWR/NWCRDSNWSEGS
COMMON/NMEBRS/NUNKNS
COMMON/RWIRE/WR
COMMON/SWMIRESEG
COMMON/PLAT1/DATNOD
COMMON/PLAT2/NCONN
COMMON/PLAT3/NBOIJND
COMMON/CONST/PIKNJIWU4PX14PJE,WEO4PX14PJU
COMMON/MAPUS/MAPUNK
COMMON/MATRX3/Cl
COMMON/MATRX2/CV
COMMON/MATRX1/CZ

C
COMMON/CDIMEN/JNODESJEDGESJFACES
COMMON/CDIMWR/IWCRDSJWSEGS
COMMON/CNMEBRS/JUNKNS
COMMON/CR WIRE/C WR
COMMON/CS WIRESEGJ
COMMON/CTLAT1/CDATNOD
C0MMON/CPLAT2/JCONN
COMMON/CPIAT3/JBOUND
COMMON/CONST/KN1U14PX14PWE,X14PIJWE14PX14PWU
COMMON/CMAPUS/MAPUNKJ
COMMON/CMATRX3/CC'I
COMMON/CMATRX2/CCV

C
COMMON/KD hX/NODESKEDGES,KFACES
COMMON/KDIMWR/KWCRDS,KWSEGS
COMMON/KNMBRS/KUNKNS
COMMON/KR WIRE/K WR
COMMON/KS WIRESEGK
COMMON/KPLAT1/KDATNOD
COMMON/KPLAT2/KCONN
COMMON/KPLAT3/KBOUND
COMMON/KMAPUS/MAPUNKK
COMMON/KMATRX3/KCI
COMMON! KMATRX2/KC V

C
C read the geometry for the COATED perfect conductor
C

OPEN(FILE-'STORAGE'.STATUS-OLD',UNIT-55,FORM-UFORMA'ITE')
CALL HFLE(MNODESMEDGESMFfACESMWCRDSMUNKNSSTATE)
CLOSB(55)
IF (STATE.NEO) THEN

wRITE6,1O1)
STOP
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ENDEF
C
C read the geometry for the EXPOSED perfect conductor
C

OPEN(FILEgKSTRAGE',.STATUS-'OLD',UNIT-54,FORM-uNORMATrED')
CALL HFILEK(MNODESMEDGSMFACESSMWCRDSMUNXNS STATE)
CLOSE(54)
IF (STATE.NEO) THEN
wRrE6,1Oi)

ENDIF

C read the geometry for the coating

OPEN(FILE-'CSTORAGEF,STATUS-'OLD',UNIT-56,FORM-UNFORMATrE')

CALL HIEMNODESMEDGSMACESMWCRDSMNKNSSTATE)
CLOSE(56)
IF (STATE.NEO) TMEN

wIUTE6,101)
STOP

101 FORMAT(3X,'O"~ currents have already been computed )

C
C establish Z-matrix
C

OPEN(FE-'XRESA'r,STATUS-'NEW',UNT-57,FORM-UFORMATrE')
CALL ZIN1T(CZJUNKNS4UNKNS)
CALL ZPLPL1(CZJUNKNSNUNKNSKUNKNS)
CALL Z~flT(CZJUNKNS4UNKNS)
CALL ZPLPL2(CZJUNKNS)
CALL ZPLPL5(CZJUNKNS)
CALL ZINITCZJUNKNSJUNKNS)
CALL ZPLPL6(CZTUNKNS)
CALL SAFE(CZ~XJNSKUNKNSNUNKNSI)
CALL ZIN1T(CZ4UNKNSKUNKNS)
CALL ZPLPL3(CZJUNKNSKUNKNS)
CALL ZPLPL9(CZYJUNKNSKUNKNS)
CALL ZIN1T(CZJUNKNSKUNKNS)
CALL ZPLPL7CZjUNKNSKUNKNS)
CALL ZPLPL10XC7,4UNKNSKUNKNS)
CALL ZIN1TCZIKUNKNSIKUNKNS)
CALL ZPLPL1 1(C7,KUNKNS)
CALL SAFE(CZJUNKNSKUNKNSNUNKNS,2)
CALL ZIN1T(CZ4UNKNSXUNKNS)
CALL ZPLPL4(CZJUNKNSNUKNS
CALL ZPLPL13(CZ,UNKNSNUNKNS)
CALL ZIN1TCZJUNKNSNUNKNS)
CALL ZPLPL8(CZJUNKNSNUNKNS)
CALL ZPLPL14(CZ4UNKNSNUNKNS)
CALL ZRN1TCZNUNKNSNUNKNS)
CALL ZPLPL16(CZNUNKNS)
CALL SAFE(CZUNKNS.KUNKNSNUNKNS3)
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CLOSE(57)
C

STOP
END

C
C read necemry geometry information for COATED perfect conductor
C

SUBROUTINE HFII(NODSMEDEWACESMWCRDSMUNKNSSTATE)
C

INTEER IJSTATE
INTEGER MNODESMEDGESMACESMWCR)SMUNKNS

COMPLEX fIlC(1),Cv(1)
REAL PLKNJWUO4PX14PJE
REAL DATNOD(4,1),WR(4,1)
INTEGER NCONN(2,1),NBOUND(6,1),SEG(4,1),MAPUNK(1)

C
COMMON/IDIEN/NNODESNEDGES,NFACES
COMMON/DIMWRINWCRDS,NWSEGS
COMMON/NMBRS/NUNKNS
COMMON/RWIRE/WR
COMMON/SVWIRE/SEQ
COMMON/PLAT1/DATNOD
COMMON/PlAT2/NCONN
COMMON/PLAT3/NBO1JND
COMMON/CONST/PIJNNnJWU4P,X14PJEWE4P,X14PJU
COMMON/MAPUS/MAPUNK
COMMON/MATRX3/CI
COMMON/MATRX2/CV

C
READ(55,ERR-990) STATE
READ(55,ERR-990) NNODESEESNFACESNWCRDSNWSEGSNUNKNS

C
IF (NNODES.GTswMNDs) wRrrE(6,91) MNODES,
IF (NEDGEs.GT.mEDGEs) wRrrE(6,92) MEDGES
IF (NFACEs.GTiMFACES) wRrrE6,93) MFACES
IF (NwCRDs.GT.mwcRDs) WRrTE6,94) MWCRDS,
IF (NUNKNs.GT.muNKNS) wRrTE6,95) MUNKNS
IF (NNODES.GT2INODES.OLNEDGE&GTMEDGESflR.NFACES.GTIffACES.OR.
+NWCRD&.GT.MWCRDSORNUNKNS.GTMUNKNS) STOP

READ(55,ERR-990) (CWR(IJ)J-1,4),J-1,NWCRDS)
READ(55,ERR-990) (CSEG(LJ)-1,4),J-1,NWSEcjS)
REAIX5ERR-990) CDATNOD(IJ),I-1,4),J-1,NNODES)
REAIX55,ERR-990) ((NCONNOJ)J-1,2),T-1NEDGES)
READX55,ERR-990) ((NBOUND(IJ)J-1,6),T-1,NFACES)
READ(55,ERR-990) PIKNJWUO4PX14PJE
REAJXS5,ERR-990) (MAPUNK(I)J-1,NEDGES)
READ(55,ERR-990) (MAPUNK(I+NEDGES),-INWCRDS)

C
READ(55,ERR-990) (CV(O)J-1,NUNKNS)
READX55,ERR-990) (CIOI),I-1,UNKNS)
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C
REWIND 55
RETURN

C
91 FORMAT(/2X,'nodes exceeds dimension of',5)
92 FORMAT(/2X~'edges exceeds dimension of'j5)
93 FORMAT(/2X,'faces exceeds dimension of'15)
94 FORMAT(/2X,'wire nodes exceeds dimension of'J5)
95 FQRMAT(/2X.'unknowns exceeds dimension of',15)
99 FORMAT(/X unexpected error in read ~
990 WITE(6,99)

C
END

C
C read necessarY geometry information for EXPOSED perfect conductor
C

SUBROUTINE HFIL.EK(MNODESMEDGESMACESIMWCRDSMUNKNSSTATE)
C

INTEGER I4VSTATE
INTEGER MNODESMDGSF- ACESMWCRDSIMUNKNS
INTEGER KNODESKEDGESKFACESWCRDSKUNKNSKWSEGS
COMPLEX JIKCI(1),KCV(1)
REAL PLKNTWUO4PX14PJE
REAL KDATNOD(4,1),KWR(4,1)
INTEGER KCONN(2,1),KBUND(6,1)aSGK(4,I),MAPUNKK(1)

C
COMMON/KDIMEN/KNODESKEDGES,KFACES
COMMON/KDIMWR/KWCRDS,KWSEGS
COMMON/KNMBRS/KUNKNS
COMMON/KRWIRE/K WR
COMMON/KSVIW/SEGK
COMMON/KPLAT1/KDATNOD
COMMON/KPLAT2/KCONN
COMMON/KPLAT3/KBOUND
COMMON/CONST/PIKNJI4WU04P,X14PJEJWEO4P,X14PJU
COMMON/KMAPUS/MAPUNKK
COMMON/KMATRX3/KCl
COMMON/KMATR.X2/KCV

C
READ(54,MR-99O) STATE
READXS4,ERR-990) KNODESKEDGESKACESKWCRDSKWSEGSKUNKNS

C
IF (KNODES.GTivNODE) wRrTE6,91) MODES
IF (KEDGE&GTN~EDGES) WRrTE6,92) MEDGES
IF (KFACES.GTjFACEs) wRrrE(6,93) MFACES,
IF (KWCRDS.GTMWCRDS) wRITE6,94) MWCRDS
IF (KuNKNS.GT.muNXNS) wR1TE6,95) MUNKNS
IF (KNODES.GT2NODE&ORKEDGE&GTMEDGES.ORKFACES.GTIMFACES.OR.

+ KWCRDS.GTMfWCRD&.ORJCUNKNS.GTMUNKNS) STOP
C

READ(54,ERR-990) ((KWR(IJ)J-1,4),J-1,KwCRDs)
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READ(54,ERR-990) ((SEGK(I4),I-1,4)J-1KWSEGS)
READ(54,ERR-990) ((KDAThOD(IJ),I-1,4),J-1,KNODES)
REA.D(54ERR-990) (CKCONN(IJ),-1,2),J-1,KEDGES)
READ(54,ERR-990) ((KBOUND(1J)J-1,6),J-1,KFACES)
READ(54,ERR-990) PIKNJLAJW 4PX14PJE
READ(54,ERR-990) (MAPUNKK(I)J-1,KEDGES)
READX54,ERR-990) (MAPLJNKK(I+KEDGES)J-i,KWCRDS)

C
READ(54,ER.R-990) (KCVOI)-1,KUNKNS)
READ(54,ERR-990) (KCI(I),IKUNKNS)

C
REWIND 54i
RETURN

C
91 FORMAW(2X,'nodes exceeds dimension of',15)
92 FORMAT(/2X,'ecges exceeds dimension of',15)
93 FORMAT(/2X'faces exceeds dimension of'jI5)
94 FORMAI(/2X'wire nodes exceeds dimension of',I5)
95 FORMA I(/2X,'unknowns exceeds dimension of',I5)
99 FORMAT(/2X'" unexpected error in read *w)
990 WRrrE(6,99)

STOP
C

END
C
C read necessary geometry information for coating
C

SUBROUTINE HFILE(MNODESMEDGESMACESMWCRDSMUNKNSSTATE)
C

INTGER ,JSTATE
INTEGER MNODESMEDGESMFACESMWCRDSMUNKNS
INTEGER JNODESJEGESJFACESJWCRDSJUNKNSJWSEGS
COMPLEX JLCaI(i),CCV(i)
COMPLEX EPSILONMUKN1JWU14PX14PWEJTWE14PX14PWU
REAL PLKNJWUO4PX14PJE
REAL CB-l DAMOMEGAEPSLONOJWE4PX14PJUX14PI
REAL CDATNOIX4,1),CWR(4,1)
INTGER JCONN(2,1),JBOINDX6,1),SEGJ(4,1),MAPUNXJ(l)

C
COMON/CDMfEN/JNODESJEDGES,JFACES
COMMON/CDIWR/J"WCRDSJWSEGS
COMMON/CNMBRS/JUNKNS
COMMON/CRVWIRE/C WR
COMMON/CS WIRE/SEGJ
COMMON/CPLATI/CDATNOD
COMMON/CPLAT2/JCONN
COMMON/CPLAT3/JBOUND
COMMON/CONST/PI.KNJIJW~UO4P,X14PJEJWE04P,X14PJ'U
C04ON/CONST/KN,JWU14P,X14PWE,X14PJWE14P,X14PWU
CQMMON/CMAPUS/MAPUNKJ
COMMON/CMATRX3/CCI
COMMON/CMATRX2/CCV
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C
READ(56,ERR-990) STATE
REAI56,ERR-990) JNODESJEDGES4ACES4WCRDSJWSEGSJUNKNS

C
IF (JNODES.GT.MfODES) WRrrE(6,91) MNODES
IF (JEDGES.GT.MEDGES) wRIrE(6,92) MIEDGES
IF (JFACEs.GT.mAcEs) wRrrE(6,93) MFACES
IF (.JWCRD&.GTMWCRDS) wRITE(6,94) MWCRDS
IF (JUNKNs.GT.MUNXNs) wRrrE(6,95) MUNKNS
IF (JNODE&GTvMODES.ORJEDGES.GT.MEDGES.ORJFACES.GTLMFACES.OR

+ JWCRDS.GT.MWCRDS.ORJUNKNS.GTMUNKNS) STOP
C

REAIX56,ERR-990) ((CWROT)1-1,4),J-1JWCRDS)
REAIX56,ERR-990) ((SEGJ(IJ)J-1,4),J-1,4WSEGS)
REAJX56,ERR-99o) ((CDATNODXIJ),I-1,4),J-1,JNODES)
REAJX56,ERR-990) (COcNN(LDI-1,2),J-1,JEDGES)
REAJXS6ERR-990) (OI3OUNDOJ)-1,6),J-1,JFACES)
REAIX56,ERR-990) PIINJUWUO4PX14PJE
READXS6,ERR-990) (MAUNKJ(I),I4EGES)
READ(56,ERR-990) (MAUNKJ(I-+JEDES),-I1WCRDS)

C
READXS6,ERR-990) (cCV()J-lUNKNS)
RBAD(56,ERR-990) (CCIWI-1JUNKNS)

C
REWIND 56

C
C calculate constants
C

TYPE *, ENTER RELATIVE EPS & MU OF COATING: EPS(REIM[),M[U(REjIM
READ(*,*) EPSILONIMU

TYPE *,'PSILON RELATWVE-XPS1LON
TYPE *,'MI 1RfL~'fl\E',M[UT

P1- 3.1415926535897932
C- 299792456
LAMBDA- 1.0
MUO- 4W1l~D-7

TYPE *,'MUO-',MUO
KN- 2*PL/LAMBDA

TYPE *,'KN 'K

OMEGA- KN*C
TYPE *,'OMEGA-m',OMEGA

EPSLONO- 1/(MUO'C**2)
TYPE *,EPSLONO-',EPSLONO

MU- MU*MUO
TYPE,'U'M

EPSILON- EPSIILON2EPSLONO
TYPE *,SIONB,EPSR1ON

JWUO4P- OMEGA*MUO/(4*PI)
TYPE *,'JWU04P-',JWUO4P

X14PJE- _1/(4PI*OMEGA*EPSLON0)
TYPE *,'X14PJ..',Xl4PJE

i1- CMIPLX(oi-i)
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TYPE *,'JI-',JI
3WEO4P- OMEGA*EPSLONO/(4PI)

TYPE *,'JWE(J4-',JWE04P
X14PJTU- -1/(4*PI*OMEEGA*MUO)

TYPE *,'X14PJU-',X14PJU
KNI- OMIEGA*SQRT(MU*EPSILON)

TYPE *,'KN1-',KN1
JWU14P- OMEGA*MU/(4*PI)

TYPE *,jWU14P.'JWU14P
X14PWE- -1/(4*PI*OMEGA*EPSI]LON)

TYPE *,X14PWE-'Xl4PWvE
X14PI- 1/(4*PI)

TYPE *,-X14PI-',X14PI
- IWE14Pu OMEGA*EPSILON/(4*PI)

TYPE *,JWE14P-'JWE14P
* X14PWU - 1/(4*PPOMEGA*MU)

TYPE *,'X14PWVU.',X14PWVU
* C

RET URN
C
91 FORMAT(/2X,'nodes exceeds dimension of',15)
92 FORMAK/2X,edges exceeds dimension of',5)

* 93 FORMAT(/2X,'faces exceeds dimension of'J5)
* 94 FORMAT(/2X,'wire nodes exceeds dimension of',I5)

95 FORMAT(/2X,'unknowns exceeds dimension of',5)
*99 FORMAW(2X,*" unexpected error in read 1*)

990 wRrTE6,99)

C
END

* C
*C Z-MATRIX contributions

C
C
C uit cz matrix
C

SUBROUTINE ZIN1TCZJUNKNSNUNXNS)
INTEGER JUNKNS.NUNKNS
COMPLEX CZ(JUNKNSNUNKNS)

4 DO 2001 I-lJUNKNS
Fj 2001 J-1,NUNKNS

*2001 CONTINUE
RETURN

C
C plate - plate coupling

* C
SUBROUTINE ZPLPL1(CZJUNKNS,NKSKUNKNS)

C
INTEGER fJUNKNSYNUNKNSKUNKNS
COMPLEX JIAIPSGNPOT
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COMPLEX CVECXSIU.CETA.CPHLil(3),CDOT
COMPLEX CVEC1,CXSI1,CETA1,CPFH1,A2(3)
COMPLEX CZ(RUNKNSJUNKNS),CX1,CFCFX
COMPLEX KNlJWUl4PX14PWEJWEl4PX14PWU
REAL PI.KNJWUO4PX14PJEJWEO4PXl4PJ-UX14PI
REAL MiAGNI.GTAREAAR-A1NVDOTAREA1MTRASH
REAL DR4PTRLUNl(3),ROl(3),LlM(3),LlN(3)
REAL Ri lM(3,3),R1M(3),RClM(3),RHO1M(3),Rl 1N(3,3)
REAL XSI(7),ETA(7),wGHT(7)
INTGER JNODESJEDGESJFACESJWCRDS4WSEGS
INTEGER MJX(2),MOMlN(2),NON1MAPl,E1M(3)XE1N(3)JSGN

C
INTEGER IREPPLATE
PARAM[ETER (wmIE-2)
PARAMETER (PLATE-3)

C
COMMON/CDIMEN/JNODESJEDGES,JFACES
COMMON/CDDMWRJWCRDS,JWSEGS
COMMON/CONST/PIKNJIWUO4P,X14PJEPTWE04P,X14PJU
COMMON/CONSTl/KN1,JWU14P,X14PWE,X14PIJWE14P,X14PWU
COMMON/NUMINT/XSIEA.WGHT

C
EXTERNAL MAGNLGTAREAIIVDOTMAP1
EXTERNAL SGNPOTJSGNCDOT

C
C source triangles
C

DO 2005 NO-1,4FACES
CALL VTXCRD1(NOJU iN)
AREA1N - GTAREA(R11NPLATE)
CALL LENGTH(RiINL1N)
CALL FACED~i(N,ElN(l),ElN(2),EiN(3))

C
* C observation triangles

C
DO 2004 MO-1,JFACES

CALL VTXCRDi(MORi1M)
AREA1M - GTAREA(R11MPLATE)
CALL CENTER(R1 1MRC1M,PLATE)
CALL LENGTH(R1lIMLM)
CALL FACEDG1(MOE1M(1),EiM(2),ElM(3))

C
C compute integrals
C

CALL NINT(RI iNRCiMCVECCXSCMAPOTCPIHRLNi,ROiAREAiNDR)
CALL NITA(RiiNRCiMCVECi,CXSIi,CETAi,POTCPIi,

+ RLNi,ROi,AREAINDR)
C

DO 2003 Ni-iPLATE
N(i) - MAPI(NONiPLATE)
N(2) - MAPi(N0,Ni+PLATEPLATE)
IF (N(i).NE.o.OR.N(2).NE.0) THEN
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P - ISGN(E1NCN1)) * L1N(Nl)/AREA1N * JI* X14PJE * CPFH +
+ ISGNCEIN(N1)) *LINCNl)/ARBA1N * JI *X14PWE *CPHI1

DO 2001 1-1,3
AWC) - ( RI1NQ,1) -R11N(IN1)) CVEC+

+ ( R11N(I,2) - R11N0J1) ) * CXSx +
+ ( R11NO,.3) - R11N(L1 ) * CETA+
+ ( ROWC) - R11NONl) ) * POT + RLN1(I)

A20) - C R11N(L1) - RI1N(IN1) ) * CVEC1 +
+ CR11N(L2) - R11NCI,1 ) * cxsII +
+ CR11N(I,3) - R11N(Il) ) * CErA1 +
+ CR010) - RllNON1) * POT + RLNiG1)

AIlO) - ISGN(E1N(N1)) *L1N(Nl)/C2*AREAlN) *AlC0)
A201) - ISGN(E1NCN1)) L1N(N1)/(2*AREA1N) * 2)

2001 CONTINUE
C

DO 2002 Mi-iPLATE
M(D) - MAPI(MOj~lPLATE)
M(2) - MAPiCMOMi+PLATEPLATE)
IF (MC)NERo.OR.MC2).NE) THEN

CALL P1RHO(R11MM1,RHO1M)
A - JI JWUO4P * CDOT(HO1MAl) +

+ JI * JWU14P * CDOMRHOWMA2)
CXl - ISGNCE1MCM))*LIM(M1)*(A+P)

C
IF (DRJ-.LlMC1).OR.DR.LTJl1MC2).OR.DR.LT.L1M(3)) THEN

C
C do the 7-pt integration over the observation triangle
C

CF - 0
CFX - 0
DO 2051 11-1,7

DO 2050 33-1,3
R1M(JJ) - Ri 1M(JJ,1) + (Ri 1M(JJ,2)-R1 1M(JJ,1))*XSI(II) +

+ CR1 1M(JJ,3)-RI 1MCJJ,))kETA(I1)
RHO1MCJJ) - R1MCJJ)-R11M(JJM1)

2050 CONTIUE
CALL NINT7CR1 1NR1CECCXSLCAPOTCPHR N,R1,REANTRASH)
CALL NINTACR1 1NR1MCVEC1,CXI1CETA1,POTCPHI1,

+ RLN1,R01AREA1NTRASH)
P - ISGNCE1N(N1)) * L1NCN1)/AREA1N * J1 * X14PJE * CPIH +

+ ISGN(E1N(N1)) *L1NCN1)/AREA1N * J1 * X14PWE *CPIHi1

DO 2049 1.1,3
AMO) - C RI1N(L1) -R11N(IN1) )*CVEC +

+ CR11NCL2) - R11NCI.1) ) * CXSI +
+ CR11NCI,3) - R11NCI,1) ) * C~rA+
+ CR01CI) - R11N(IN1) ) * POT + RLNiI)

A20i) - C R11NCI1) - R11N(1,N1) ) * CVECi +
+ CR11NCI,2) - R11N(I,1) ) * CXSI1 +
+ CR11N(1,3) - R11NCL1) ) * CETAI +
+ CR0lCI) - RilNOINi)) * POT + RLNIQ)

AlO) - ISGNCE1NCN1) L1NCNl)/C4*AREA1N) * AlC)
A20I) - ISGNCE1NCN1) L1N(N1)/(4*AREA1N) * A20I)
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2049 CONTINUE
A - JI * JWTj04P* CDO'r(R.HO1M,A) +

+ J3 JWU14P * CDOIO1M,A2)
CFX - ISGN(EIM(M1))*L1M(M1)/AREA1M*(A+P)
CF - CF + CFX*WGHT(II)

2051 CONTINUE
CX1 - CF * AREA1M

C
ENDIF

C
DO 3001 J-1,2
DO 3001 K-1,2

]IF (M(K).NE0_AND.N(J).NE.0) THIEN
IF(M[(K)MNEN(J)) THEN

CZ(M(K),N(J)) - CZ(M(K)IN(J)) + SGNPOT(CXJK)/2
CZ(N(j),M(KD) - CZ(NOX)M(K)) + SGNPOr(CXl,JK)/2

ElE
CZ(M(K),N(J)) - CZ(M(K),N(J)) + SGNPOT(CXJK)

ENDEF
ENDIF

3001 CONTINUE
ENDIF

2002 CONTINUE
ENDIF

2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C
C

WRUTE(57) 2JUNKNS+NUNKNS+KUNKNSO0
DO 147 J-1,JUNKNS

147 WRrE(57XCZ(IJ),I,)
C-
C

TYPE *,' CZ1 COMPLETEY
C

J RETURN
END

C
SUBROUTINE ZPLPL2(CZJUNKNS)

C
INTGER JUNKNS
COMPLEX JAPSGNPOT
COMPLEX CVECKOCXSIKOCErAKOA(3),A3(3),CDOT
COMPLEX CVECK1,CXsIK1,C=AK1,A2(3),A4(3)
COMPLEX CZ(JUNKNSJUNKNS),CX2,CFCFX
COMPLEX KN1JWU14PX14PWEJWE14PX14PWU

S ~REAL PIIKNJWUO4PX14PJEJWEO4PX14PJUX14P1
REAL MAGNIGTAREAAREA1NVDOTAREA1MTRASH
REAL DR~POTLN1(3),ROl(3),LIM(3),L1N(3)
REAL RI 1M(3,3),RIM(3),RC1M(3),RHO1M(3),R1 N(3,3)
REAL RI(3),RIMRCM(3),RCMXRI(3)
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REAL XSI(7),FETA(7),WGHT(7)
DNTEER JNODESJEDGESJFACES4WCRDSJWSEGS
INTEGER IJKM(2),M0,M1N(2),NON1,MAP1lM(3),E1N(3)JSGN

C
INTEGER WIREILATE
PARAMETER (WIR.E-2)
PARAMETER (PLATE-3)

C
COMMON/CDIMEN/JNODESJEDGES4JFACES
COMMON/CDIMWR/JWCRDS,JWSEGS
COMMON/CONSrIPLKN4IJWU4PX14PJEJWEO4P,X14P.TU
COMMON/CONST1IKN1JWU14P,X14PWE,X14P,.WE14P,X14PWU
COMMON/NUMINT/XSI.ErA.WGHT

C
EXTERNAL MAGNILGTAREA.VDOTMAP1
EXTERNAL SGNPOTISNCDOT

C
C source triangles
C

DO 2005 NO-1,JFACES
CALL VTXCRD1(NOR1 N)
AREA1N - GTAREA(R11NPLATE)
CALL LENGTH(R11NL1N)
CALL FACEDGl(NOElN(l),ElN(2),ElN(3))

C
C observation triangles
C

DO 2004 MO-dJFACES
CALL VTXCRD1(MORl1M)
AREA1M - GTAREA(R11MPLATE)
CALL CENTER(R1 1MRC1MPLATE)
CALL LENGTH(R11MLlM)
CALL FACEDG1(MOE1M(1),E1M(2),E1M(3))

C
* C compute integrals
* C

IF(MO.EQ.NO) THEN
CVECKO -0

CXSIKO -0

CETAKO -0

CVECKI 0
CXSIK1 -0
CETAKi 0

* ELSE
CALL NINT7B(R11NRC1MCVECKOCXSIKOCETAKOAREA1NDR)
CALL NINT7CXR1 1NRC1MCVECK1,CXSIK1,CErAK,AREAlNDR)

ENDIF
C

DO 2003 Nl-lPLATE
N(1) - MAP1(NON1,PLATE)
N(2) - MAP1(NONl+PLATEPLATE)
IF (NlXNE.O.OR.N(2).NE~O) THEN
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DO 2001 1-1,3
AlI) - R11NO,.1) * CVECKO +

+ ( Rl1NO,2) - R11NO,1 ) CXSIKO +
+ C R11N(I,3) - RilN(LI) )*CETAKO

A20I) - RilN~l) * CVECK1 +
+ C R11NCL,2) - R11NCL1) ) * CXSIK1 +
+ C R11N(I,3) - R11NCI1) ) * CETAK1

RIO) - R11NCIN1)
RIMRCMCI) - RIO) - RC1MO)

2001 CONTINUE
CALL CROS2CRC1M=RCMXRI)
CALL CROS3CRIMRCMA1A3)
CALL CROSS3(RBMCMA2,A4)
DO 2025 1-1,3

Al(D - A3(I) + RCMXRI(I) * CVECKO
A2Q) - A40I) + RCMXRI(I) * CVECK1
AIl) - ISGNCElNCN1)) * L1N(N1)/(2*AREA1N) * AlCI)
A20I) . ISGN(ElN(N1)) * L1N(N1)/(2*AREA1N) * A20)

a2025 CONTINUE

DO 2002 Mi-iPLATE
M~l) - MAPICMOM1PLATE)
M(2) - MAP1CMoMI+PLATEPLATE)
EF CMC).NE..OR.MC2).NE.0) THEN

CALL P1RHO(R11MM1,RHO1M)
A - X14PI * ( CDOT(01MAl) +CDOT(RHOlMA2))

* CX2 - ISGN(ElM(Ml)) * L1M(M1) *A

IF (DR.LTJl1M(l).OR.DRLLM(2).OR.DR.LTJAlM(3)) THEN
C
C do the 7-pt integration over the observation triangle
C

CF - 0
CFX - 0
DO 2051 H1-1,7

DO 2050 JJ-1,3
R1M(JJ) - R11MCJJ,1) +(R11MCJJ,2)-R11M(JJ,))ESI(]I) +

+ CR11MCJJ,3)-R1 1m(JJ,))oETACiI)
RHOIMCJJ) - R1M(JJ)-R11M(JJM1)

2050 CONTINUE
IF(M0.EQ.N0) THEN

CVECKO - 0
CXSIKO - 0
CETAKO - 0
CVECK1 - 0
CXSIK1 - 0
CETAK1 - 0

U~.SE
CALL NINT7B(R1 1NR1MCVECK0,CXSIK0,C~rAK0,AREA1NTRASH)
CALL NINT7CXR1 1NR1MCVECK1,CXSIK1,CETAK1,AREA1NTRASH)

ENDEF
DO 2049 1-1,3
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AlO) - RIINCI,) * CVECK0 +
* ( R11N(I,2) - R11NO,1) ) * CXSIKO +
* C R11N(I,3) - R11NCI1) ) * CETAKO

A20I) - R11NCI) * CVECK1 +
+ ( Rl1NO,2) - R11NCL1) ) * CXSIX1 +
+ C R11NCI,3) - R11NCI.1) ) * CETAK1

RICO - R1INCINl)
RIMRCMCI) - RIO) - RiMO)

2049 CONTINUE
CALL CROSS2CRIMRJCMXRI
CALL CROSS3(RMCMA1,A3)
CALL CROSS3(RIMRCM,A2,A4)
DO 2048 1-1,3

A10I) - A30I) +RCMXRIXI) * CVECKO
A2(I) - A40I) + RCMXRI(I) * CVECK1
AI) - ISGN(ElNCN1)) *L1N(N1)/(4*AREA1N) *AlI)
A20I) - ISGNCE1NCN1)) * L1NCN1)/C4*ARE-A1N) * A20I)

2048 CONTINUE
A - X14PI CCDOIlHOlMA1) + CDoT(RHOlmA2))
CFX. - ISGNEWM1)) *L1M(Ml)/AREA1M * A
CF - CF + CFX*WGHT()

2051 CONTINTUE
* CX2 - CF * AREAIM

* C
ENDIF

C
DO 3001 J.1,2
DO 3001 K-1.2

EF (MC(K)NE.AND.NCI)NE0) THEN
C~Z(M(K),NCJ)) - CZ(M(K),NOJ)) + SporICXzK)/2

ENDIF
3001 CONTINUE

ENDIF
2002 CONTINUE

ENDIF
2003 CONTINTUE
2004 CONTIUE
2005 CONTINUE
C

TYPE *,' CZ2 COMPLETED
C

RETURN
END

C
SUBROUTINE ZPLPL3(CZJUNKNSKUNKNS)

C
INTEGER JUNKNSKUNKNS
COMPLEX JI.APVSGNPOT
COMPLEX CVECCXSICETACPHLIA1C3),CDOTr
COMPLEX CZ(JNKNSKUNKNS),CX3,CFCFX
COMPLEX KN1,JWU14PX14PWEJWE14PX14PWU

* REAL PIKNJWUO4PX14PJEJWEO4PX14PJUX14PI
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REAL MAGNILGTAREAAREA1NVDOTAREA1MPTRASH
REAL DRPOTRL N1(3),ROl(3),L1M(3),L1N(3)
REAL Rl1M(3,3),RlM(3),RC1M(3),RHO1M(3),R1 1N(3,3)
REAL XSI(7),ETA(7),WGHT(7)
INTEGER KNODESKDCOESKFACESKWCRDSKWSEGS

* INTEGER JNODESJEDGESJFACESJWCRDSJWSEGS
INTEGER M(2)M4OMA1N(2),NONlNWMAAP2
iNTEGER E1M(3XElN(3)ISN

C
INTEGER WIRELATE
PARAMTER CWIRE-2)
PARAMETE (PLATE-.3)

C
COMMON/KDIMEN/KNODESKEDGESJ(FACES
COMMON/KDIWR/KWCRDSJ(WSEGS
COMMON/CDIMEN/JNODESJEDGES,JFACES
COMMON/CDIMVWJWCRDS,JWSEGS
COMMON/CflNST/PKNJIJWU04P,X14PJEJWEO4P,X14PJUJ
COMMON/CONST1/KN14JWU14P,X14PWE,X14PIJWE14PX14PW~U

up ~COMMON/NUMINT/XSIEAIWGHT

EXTERNAL MAGNIGTAREAVDOTIMAP1,MAP2
EXTERNAL SGNPOTJSNCDOT

C
C source triangles
C

* DO 2005 NO-1,KFACES
CALL VTXCRD2(NOR1 iN)
AREA1N - GTAREA(R11NPLATE)
CALL LENGTH(R1NJAN)
CALL FACEDG2(NOE1N(1),E1N(2),E1N(3))

C
C observation triangles
C

DO 2004 MO-1,4FACES
CALL VTXCRD1(MOR11M)
ARBEiM - GTAREA(R11MPLATE)
CALL CENTERCR11MRCIMPLATE)
CALL LENGTH(R1 1ML1M)
CALL FACEDG1(MOE1M(1),E1M(2),EIM(3))

C
C compute integrals
C

CALL NINT7(R11NRC1MKCVECCXSLCEAPOTCPI
+ RLN1,RO1,AREA1NDR)

C
DO 2003 NI-IPLATE

N(l) - MAP2(NON1,PLATE)
N(2) - MAP2(NON1+PLATEPLATE)
IF 1N().NE.o.ORN(2).NE.o) THEN

P - ISGN(E1N(N1)) * L1N(N1)/AREAlN *JI *X14PJE *CPIH

DO 2001 1-1,3
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AlO) -(R11NO,1) - R11NON1) ) * CVEC +
+ CR11NCL2) - R11N(I1) ) * CXSI +
+ CR11NOI,3) - R11N(U,) ) *CETA +
+ CROWC) - R11N(LN1) )* POT + RLN1CI)

AM)) - ISONCE1NCNl)) *L1NCN1)/(2*ARE-A1N) AlCI)
2001 CONTINUE
C

DO 2002 Mi-iPLATE
WOi - MAP1(MOM1,PLATE)
M(2) - MAP1(MOM1+PLATEPLATE)
IF 1YNE~.OR.M2)NEO) THEN

CALL PIRHOCRi1MM1,RHO1M)
A - 31 * JWU04P * CDOT(RHO1MAl)
CX3 - ISGNCElM(M))L1M(M1)'(A+P)

IF (RLTJAlMC1).ORLTAM(2).OR.DR.LT.LlM(3)) THEN

C do the 7-pt integration over the observation triangle
C

CF - 0
cFX - 0
DO 2051 H1-1,7

DO 2050 JJ-1,3
R1M(JJ) - R11MCJJ,1) + (R11M(JJ,2)-Rl1M(ni,1))*XSIW1) +

+ (Rli1MCJJ,3)-R1 1M(JJ,1))*ETA(U)
RHO1M(JJ) - R1M(JJ)-R1 1MCJJM1)

2050 CONTINUE
CALL NIn-7(RIIN.R1MCVECCxsICErAOTCPHI,

+ RLN1,RO1,AREA1NTRASH)
P - ISN(EINCN1)) * LINCN1)AREA1N * J1 * X14PJE *CPH

DO 2049 1-1,3
A10) -CR11N(I,1) - R11N(IN1) )*CVEC +

+ C R11N(l,2) - R11N(L1) ) * CXSI +
+ C R11N(I,3) - R11N(I.) ) * CETA +
+ C ROWO) - R11N(IN1) * POT + RLN1I)

AM)) - ISGN(E1N(N1)) LlN(N1)/(4*AREA1N) * AM()
*2049 CONTINUE

A - JI * JWrJ04p * CDOT(RHO1MA1)
CFX - IGN(EIM(Ml))qAlM(Ml)/AREAlMw(A+P)
CF - CF + CFX*WGHTC)

* 2051 CONTINUE
CX3 - CF * AREA1M

C
ENDIF

C
DO 3001 J-1,2
DO 3001 K-1,2

IF (MK)Eo D.NCJ)NE~O) THEN
CZ(M(K)IN(J)) - CZ(M(K),NCJ)) + SGNPOT(CX3,.JK)/2

ENDIF
3001 CONTINUTE

ENDIF

S I-* V. * .. * .. * . . --
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2002 CONTINUE
ENDIF

2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C

TYPE *,' CZ3 COMPLETED'
C

RETURN

C
SUBROUTINE ZPLPL4(CZJUNKNSNUNKNS)

* C
RNTGER .JUNKNSXNUNKNS
COMPLEX JIAYPSGNPOT
COMPLEX CVEC1,CXSI1,CErA1,CPIH1A2(3),CDOT
COMPLEX CZ(JUNKNSNUNKNS),CX4,CFCFX
COMPLEX KN1,JWU14PX14PWEJWE14PX14PWrU
REAL PIIKN4WUO4PX14PJEJWEO4PX14PJUX14PI
REAL MAGNIPGTAREAAREAINVDOTAREA1MKTRASH
REAL DRPOTLN1(3),RO1(3),L1M(3),LlN(3)
REAL RI 1M(3,3),R1M(3),RC1M(3),RHO1M(3),R1 1N(3,3)
REAL XSI(7),FErA(7),WGHT(7)
InEER NNODESNEDGESNACESNWCRDSNWSEGS
INTrEGER JNODESJEDGESJFACESJWCRDSJWSEGS
INTEGER lj.M(2),N4M1,N(2),NON1JvAPAP1
INTEGER ElM(3),EIN(3XISGN

C
INTEGER WIREPLATE
PARAMEME (WHZE-2)
PARAMEME (PLATE-3)

C
COMMON/DIEN/NNODESNEDGES,NFACES
COMMON/DIMWR/NWCRDS,NWSEGS
COMMON/CDIMEN/JNODESJEDGESJFACES
COMMON/CDIMfWR/.JWCRDSTWSEGS
COMMON/CONSr/PIKN4I4WU04PX14PJE4WIE04PX14PJU
COMMON/CONSTI/KNI4WUl4PX14PWEX14PIJWE14PXl4PWU
COMMON/NUMINT/XSIETAWGHT

C
EXTERNAL MAGNLGTAREAIVDOTMAPMAP1
EXTERNAL SGNPOTISGNCDOT

C
C source triangles
C

DO 2005 NO-1,NFACES
* CALL VTXCRD(NOR11N)
* AREA1N - GTAREA(R11NPLATE)

CALL LENGTH-(R1 1NL N)
CALL FACEDG(NOE1N(l),ElN(2),E1N(3))

C
C observation triangles
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DO 2004 MO-1,JFACES
CALL VTXCRD1(MOR1IM)
AREA1M - GTARE-A(R11MPLATE)
CALL CENTE(R1 1MRC1MIPLATE)
CALL LENGTH(R1 1MLM)
CALL FACEDG1CMOE1M(1),E1M(2),E1M(3))

C
* C compute integrals

C
CALL NInTACR11NRC1MCVECcxsi1CETA1POTCPHI1,

+ RLN1,.RO1,AREA1NDR)
C

DO 2003 N1-1,PLATE
N(1) - MAP(NON1PLATE)
N(2) - MAP(NoN1+PLATEPLATE)
IF CN(1).NEo.OR.N(2)NE~O) THEN

* P - ISGN(E1N(Nl)) * L1N(N1)/AREA1N *-fW) * X14PWE *CPI1

DO 2001 1-1,3
* A20I) - C R11N(I1) - R11N(IN1) )$CVEC1 +

+ ( R11N(I,2) - R11N(L1) ) * CXSIi +
+ ( RIINCI.3) - R11NCI,1) ) * CFI'A1 +
+ ( ROWC) - R11NCIN1) )*POT + RLN1CI)

A20) - ISGN(E1NCN1)) *L1N(N1)/C2*AREA1N) A2(1)
*2001 CONTINUJE

DO 2002 Mi-iPLATE
M(1) - MAPICMOIM1PLATE)

*M(2) - MAPi(M0,Mi+PLATEPLATE)
IF CM1)NBEo.OR.MC2NE~O) THEN

CALL P1RH(R11MM1.RHO1M)
* A - -31 *JWU14P * CDOT(RHO1MA2)

CX4 - ISGN(EIMCMl))IL1MCM1)*(A+P)

IF (DR.LT-L1MC1).ORLDR.LT.L1M(2).OR.DR.LTIlMC3)) THEN

C do the 7-pt integration over the observation triangle
C

CF - 0
CFX - 0
DO 2051 11-1,7

DO 2050 JJ-1,3
RIMCJJ) - R11MCJJ,1) + CR11MJJ,2)-R11M(fl,1))*XSI(1n) +

+ CR1 IMCJJ,3)-RI 1MCJJ,1))IETAC11)
RHO1MCJJ) - R1M(JJ)-Rl1M(JJM1)

2050 CONTINE
CALL NINTA(R1 1NR1MCVECCXSI1,CETAIPOTCPH,

+ RLN1,RO1,AREA1NTRASH)
P - ISGNCE1N(N1)) * L1N(N1)/AREA1N * C-Jl) * X14PWE *CPH1

DO 2049 1-1,3
A2(I) - C R11NCI,1) - R11NCLI)) CVEC1 +

+ CR11NCI,2) - R11NCL.1) )CXSI1 +
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+ ( R11N(I.3) - R11N(I.1) M EAI +
+ ( ROWC) - R11N(I.N1) )POT + RLNiI)

A2(I) - ISGN(E1N(N1)) *L1N(N1)/(4*AREA1N) * A.2(I)
2049 CONTINUE

A - -JI *JWU14P * CDOT(RoiMA)
CFX - ISGN(E1M(M1))i*L1M(M1)/AREA1M*(A+P)
CF - CF +CFX*WGHT(MI

2051 CONTINUE
CX4 - CF * AREA1M

C
ENDIF

C
DO 3001 3-1,2
DO 3001 K-1,2

IF (M(K).NE0AND.N(J).NE.0) THEN
CZ(M(K),Ncr)) - CZ(M(K),NCJ)) + SGNPOTCX4,JK)/2

ENDIF
3001 CONTNUE

ENDIF
2002 CONTINUE

ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C

TYPE ' CZ4 COMPLE=ED

RETURN
END

C
SUBROUTINE ZPLPL5(CZ4UNKNS)

C
INTEGER JUNKNS
COMPLEX IAPSGNPOT
COMPLEX CVECKOCXSIKOCETAKO.A 1(3),A3(3),CDOT
COMPLEX CVECK1,CXSIK1,CErAK1,A2(3),A4(3)
COMPLEX CZCJUNKNSUNKNS),CXS,CFCFX
COMPLEX KN1JWU14PX14PWEJWE14PX14PWU
REAL PI.KNJWUO4PX14PJEJWEO4PX14PJUX14PI
REAL MAGNLGTAREAAREA1NVDOTAREA1MITRASH
REAL DRPO(TRLN1C3),RO1(3),L1M(3),L1N(3)
REAL RI 1M(3,3),R1M(3).RClM(3),RHOMC3)R1 1N(3,3)
REAL R13)RIMfRCM(3)RCMXRI(3)
REAL XSI(7),ETAC7),WGHT(7)
INTEGER JNODESJEDGESJFACESJWCRDSJWSEGS
INTEGER I4,K)v(2),MOM1N(2),NONMAP1,E1M(3),EIN(3)ISGN

INTEGER WVIREPLATE
PARAMETER (WuIRE-2)
PARAME"TER (PLATE-3)

C
COMMON/CDDMEN/JNODESJEDGESJFACES
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COMMON/CDB4MRJWCRDS,JWSEGS
COMMON/CONSTPKNJI4WU04PX14PJEJWE04PX14PJ1J
COMMON/CONST1/KNJWU14P,X4PW,X4PIJWE14P,X14PWU
COMMON/NUINT/XSIrAWGHiT

C
EXTERNAL MAGNIGTAREA.VDOTMAPI
EXTERNAL SGNPOTISNCDOT

C
C source triangle.
C

DO 2005 NO-1,4FACES
CALL VTXCRD1(N,R1 iN)
AREA1N - GTAREA(Rl1NPLATE)
CALL LENGTH(R11NLlN)
CALL FACED0l(NOE1N(1),ElN(2),ElN(3))

C
C observation triangles
C

DO 2004 MO-l,JFACES
CALL VTXCRD1(MOR1 M)
AREAIM - GTAREA(RlMPLATrE)
CALL CENTER(R11MRCIM~PLAE)
CALL LENGTH(R11mLlm)
CALL FACEDG1(MOE1M(1),E1M(2),E1M(3))

C
C compute integrals
C

EF(M0.EQ.NO) THEN
CVIECKO -0

CXSIKO -0

CETAKO -0

CVECK1 -0

CX.SIKl 0
CETAKI- 0

ELSE
CALL NINT7B(RINRClMKCVECK0CXSIo~CEAKoARAlNDrR)
CALL NITCRlRlCEKCSKFAlR~NR

* ENDIP
C

DO 2003 Ni-iPLATE
4 N(1) - MAP1(NON1PLATE)

N(2) - MAP1(NON1+PLATEPLATE)
IF 1).NE.o.OR.N(2.Ro) THEN

DO 2001 1-1,3
AMO) - R11NCL1) * CVECKo +

+ CRl1N(I,2) - RlIN(Il) ) * CXSIKO +
+ CRl1NCL,3) - R11N(I,1) ) * CETAKO

A20I) - R11N(L1) * CVECK1 +
+ CRllN(I,2) - RllN(Il1) ) * CXSIKl +
+ CR11N(I,3) - R11NCI,1) ) * rAKJ

RICO) - R11NCW1)
RIMRCMCI) -RIO) - RC1MQ)

% ~ 
* -



Appendix D. EFIE2PC Computer Program 172

2001 CONTINE
CALL CROSS2(RC1MRIIRMI
CALL CROSS3(RMh4CMA1A3)
CALL CROSS3(RIMCMA2,A4)
DO 2025 1-1.3

AlO) - A30) + RCMXRI(I) * CVECKO
A20I) - A4(I) + RCMXRI(I) * CVECK1
AlC) - ISGN(E1N(N1)) *L1N(Nl)/(2*AREA1N) * A1()
A2(I) - ISGN(E1N(Nl)) * L1N(Nl)/(2*AREAlN) * A20I)

2025 CONTINUE

DO 2002 M1-1,PLATE
W~I) - MAP1(MOM1PLATE)
M(2) - MAP1(MOM1+PLATELATE)
IF (M(1Mo.OR.M(2).NE) THEN

CALL P1RHOOU 1MM1RHO1M)
A - X14PI * C CDo'rARHoIMA1) + CDOTIkHO1MA2))
CX5 - ISGNCEIMCM1)) * L1MCM1)* A

IF (DR.LTJAlMC1).OR.DRIT.LMC2).OR.DR.LT.L1MC3)) THEN

C do the 7-pt integration over the observation triangle
C

CF - 0
CFX - 0
DO 2051 11-1,7

DO 2050 JJ-1,3
R1MCJJ) - R11MCJJ,1) + (RI1M(JJ,2)-RllM(JJ,1))*XSI(II) +

+ (RllMCJJ,3)-R1 1MCJJ,))IETACII)
2050 RHO1MCJJ) - R1M(JJ)-R11MCJJM1)

200 CONTINE
* IFCMOXQ.NO) THEN

CVECKO -0

CXSKO 0
* CETAKO -0

CVECK1 -0

CXSIK1 -0

'4 CErAKI 0
ELSE

CALL NINI1BC11NRICVECK.CXSIK0CrAK0AREA1NTRASH)
CALL NINTCXR1 1NR1MCVECK1,CXSIK1,CETAK1,AREA1NTRASH)

ENDIF
* DO 2049 1-1,3
* AlO) - RI1N(LD1 * CVECKO +

+ C R11NCI2) - R11N(LI) ) * CXS1KO +
+ ( R11NCI,) - R11N(I,1) ) * CETAKO

*A2Q)- R11NCL1)*CVECK1 +
+ ( R11N(L2) - R11N(1I) ) *CXSIK1 +

4, + ( R11N(L3) - RilN(L) ) * M~AKI
RICO - R11NCL.N1
RIMRCMC - RIO) - R1MWI

2049 CONTINE

41
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CALL CROSS2CR1MIRLCMXRI
CALL CROSS3(RIMCMA1A3)
CALL CROSS3(RIMCM.A2,A4)
DO 2048 1-1,3
AI) - A3(I) + RCMXRI(I) * CVECKO
A20I) - A40I) + RCMXRI(I) * CVECK1
AlCI) - ISGN(E1N(N1)) * L1N(N1)/(4*AREA1N) * A10I)
A2(1) - ISGN(EIN(N1)) *LIN(Nl)/(4*AREAIN) * A20I)

2048 CONTINUE
A - X14PI *CWDT(HO1M,A1) + CDO'r(RHOlMA2)

* CFX - ISGN(E1M(M1)) * LlM(M1l)/AREA1M[ * A
* CIF - CF + CFX*WGHTOI)

* 2051 CONTINUE
CXS - CF * ARBAiM

C
ENDIF

* C
DO 3001 J-1,2
DO 3001 K.1,2

EF (M(K).NEOAND.N(J)N.O) THEN
CN(J)XM(K)) - CZ(N(J)XMOO) + SGNPoTAcx,JK)/2

ENDIF
3001 CONTINUE

ENDEF
2002 CONTINUE

ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C
C

OPEN(FHE'CZ2',STATUS-'NEW,DISPOSE-'DELrE,
+ UNrT-22,FORM-'UNFORMATTED')

DO 147 J-1,JUNKNS
147 wRrME22XCZ(I4),I-1JUNKNS)
C

* C
TYPE *,' CZS COMPLETED'

C
RETURN

* END
C

SUBROUTINE ZPLPL6(CZJJNKNS)
C

INTEGER JUNKNS
COMPLEX JIA.PSGNPOT
COMPLEX CVECCXSIICETA.CPIHIA1(3),CDOT

* COMPLEX CVEC1,CXSI1,CETA1,CPIHIA2(3)
COMPLEX CZ(JUNKNSJUNKNS),CX6,CFCFX
COMPLEX KN1JWU14PX14PWEJWE14PX14PWU
REAL PIKN4WU04P.X14PIJUWEO4PX14PJUX14PI
REAL MAGNIGTAREAIARE-A1NVDOTAREA1MTRASH

Ile-
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REAL DRPTrLdNl(3),R01C3),LlM(3),L1N(3)
REAL Rli1M(3,3),R1M(3),RClM(3),RH0lM(3),RilN(3,3)
REAL XSI(7),ETA(7),WGH 7)
INTEGER JNODESJEDGES4FACES.JWCRDSJWSEGS
iTEGER IJCM(2),MOMlN(2),N0,N1,MAP1,E1M(3),ElN(3)JSGN

C
INTEGER WVIRELATE
PARAMETER (WIRE-2)
PARAMETER (PLATE-3)

C
COMMON/CDIMEN/JNODESJEDGESPJFACES
COMMON/CDIMWR/JWCRDSYJWSEGS
COMMON/CONrPKNJOV4PX14PJEJWE4P,X14PJ
COMMON/CONST1IKN14WU14P,Xl4PWE,X14PIIWEl4P,X14PWU
COMMON/NUMINT/XSI,ETA,WGHT

C
EXTERNAL MAGNIGTAREAVDOTboMAP1
EXTERNAL SGNPOTISGNCDOT

C
C source triangles
C

DO 2005 NO-1,JFACES
CALL VTXCRD1CNOR1iN)
AREA1N - GTAREACRl1NPLATE)
CALL LENGTHCR1 1NLiN)
CALL FACEDGi(NOEiN(i),EiN(2),EIN(3))

C
C observation triangles
C

DO 2004 M0-1l4FACES
CALL VTXCRDi(MORiiM)
AREA1M - GTAREA.(R11M.PLATE)
CALL CENTER(R11MRC1MJPLATE)
CALL LENGTH(R iML1M)
CALL FACEDGI(MOE1M(1),E1M(2),E1M(3))

C
C compute integrals
C

CALL NINT(Ri 1NRC1?4CECCXSCETAPOTCPH,RLNR1AREANDR)
CALL NINT7A(R1 iNRC1MCVEC,CXSIlCErA1,POTCPIH1,

+ RLN1,RO1,AREA1NDR)
C

DO 2003 Ni-iPLATE
N(1) - MAPI(N0,N1PLATE)
N(2) - MAP1(NON1+PLATEPLATE)
IF (N(i).NE.o.OR.N(2).NE~O) THEN

P - ISGN(E1N(N1)) * LiN(Nl)/AREA1N * (-31 * Xi4PJU * CPFH +
+ ISGN(EiN(Ni) L1N(Ni)/AREAiN * (-JI) *X14PWU *CPIi

*~D 2001IY1 1-1,3
AiC0) - ( RIIN(Li) Ri1N(IN1) )CVEC +

+ CRi1N(I,2) - R11N(Li) ) *CXSI +
* + CRiiN(I,3) - R1iN(I) ) *CETA +
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+ ROWC) - R11N(IN1)) POT + RLNiO1)
A20) - ( R11N(I,1) - R11N(LNl) ) *CVEC1 +

+ CRl1N(I,2) - RIIN(L1) ) *CXSII +
+ (R11NOI,3) - R11N(L1) ) * CETAI +
+ CROWC) - R11N(INI)) * POT + RLN1(I)

AlCI) - ISGN(E1N(N1) L1N(N1)/(2*AREAIN) * AMC)
A20I) - ISGNCElN(N1)) *L1N(N1)/(2*AREA1N) * A20I)

2001 CONTINUE
C

DO 2002 M1-1,PLATE
M(I) - MAP1(MOSM1,PLATE)
M(2) - MAP1(MOMi+PLATELATE)
IF (M(l).NE~O.OR.M2).NE~O) THEN

CALL P1RHO(Rl1MM1,RHIIOM)
A - -Jn * JWE04P * CDOT(RO1MA1 +

+ (-i) * JWE14P * CDOT(RHO1MA2)
CX6 - ISGN(EIM(M1))*L1M(M)(A+P)

C
IF (DR.LTL1M(1).OR.DRLTJAlM(2).OR.DRLLT.L1M(3)) TMEN

C
C do the 7-pt integration over the observation triangle
C

C - 0
CFX - 0
DO 2051 11-1,7

DO 2050 JJ-1,3
RlMCJJ) - Rl1M(JJ,1) + (R11M(JJ,2)-Rl1M(JJ,))XSl(n) +

+ (RlI M(JJ,3)-R1 1M(JJ,1))WEA(ll)
RHO1MCJJ) - R1MC3J)-Rl lM(JJM1)

2050 CONTINUE
CALL NINT7(R1 lNR1MCVECCXSTAPOTCPHARIROo1,EAINTRASH)
CALL NINT7A(R1 lNkim,C-vEC1,CXSI1CErA1,PoTcpmi,

+ RLN1,RO1AR-A1NTRASH)
P - ISGN(E1N(N1)) * L1N(N1)/AREA1N * (-3) * X14PIU * CPHI +

+ ISGN(E1N(Nl)) * L1N(N1)/AREA1N -4 (-31) * X14PWU *CPIHI

DO 2049 1-1,3
AlCI) - ( RIIN(L1) - R11N(IN1) )*CVEC +

+ ( R11NOL2) - R11N(L1) ) * CXSI +
+ ( RI1N(I,3) - R11N(L1) ) * CErA+
+ ( RO1(I) - R11N(IN1) ) * POT + RLNi(I)

A20I) - C R11N(I,1) - Rl1N(IN1) ) * CVECl +
+ CR11N(L2) - R11N(ILi) ) * CXSI1 +
+ (R11N(I,3) - R11N(L1) ) * CErAl +
+ CROWC) - RIINQIN1)) * POT + RLNI(i)

Alil) - ISGN(E1N(N1)) *L1N(N1)/(4*AREA1N) * A10I)
A20I) - ISGN(E1N(Nl)) *L1N(Nl)/(4*AREAIN) * A20I)

2049 CONTINUE
A - -31 * T-,E04P * CLX)T(RH1MAl) +

+ (-31) * TWE14P * CDOIHO1MA2)
CFX - ISGN(E1M(M1X>'LIM(M1)/AREAlM*(A+p)
CF - CF + Ci-X*WGHTC)

2051 CONTINUE
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CX6 - CF * AREAiM

ENDIF
C

DO 3001 J-1,2
DO 3001 K-1,2

IF (M(K).NE.0OAND.N(J)NE.0) THEN
IF(M(K).NE.N(J)) THEN

CZ(MKXNCJ)) - CZ(M(K),N(J)) + SGYNPOT(CX6,],K)/2
CZ(N(J),M(K) - CZ(NOJ),MK)+ SGNPOT(CX6,JK/2

ELSE
CZ(M(K)NCJ)) - CZ(M(K),NOJ)) + SGNPOT(CX6,JK)

ENDIF
ENDIF

3001 CONTINUE
ENDIF

2002 CONTINUE
ENDIF

2003 CONTINUE
2004 CONTINUE
2005 CONTINUE

C

OPEN(FILE-'CZ6',STATUS-'NEW'DISPOSE-'DELIrE
+ UNrr-26,FORM-%WNORMATIED)

DO 147 J-1,JUNKNS
147 WlRrTE26XCZ(IJ),I-1J)

TYPE *,' CZ6 COMPLETED'
C

RETURN
END

C
SUBROUTINE ZPLPL7(CZ4UNKNSKUNKNS)

C
INTEGER JUNKNSKUNKNS
COMPLEX JLAPSGNPOTr
COMPLEX CVECKOCXSIKOCETAKOA1(3),A3(3),CDOTr
COMPLEX CZCYUNKNSIUNKNS),CX7,CFCFX
COMPLEX KN14JWU14PX14PWEJWE14PX14PWU
REAL PIKNJWUO4PX14PJEJWE04PX14PJUX14PI
REAL MAGNLGTAREAAREA1NVDOTAREA1MTRASH
REAL DRPOTRLNI(3),RO1(3),L1M(3),LIN(3)
REAL Ri 1M(3,3),R1M(3),RC1M(3),RHO1M(3),R1 1N(3,3)
REAL RI(3),RIM[RCMC3),RCMX.RI(3)
REAL XSI(7),wrA(7),wGHT(7)
INTEGER KNODESKEDGESKFACESKWCRDSXWSEGS
INTEGER JNODESJEGESJFACESJWCRDSrJWSEGS
INTEGER MJX(2),MOM1,N(2),NONIMAP1,MAP2
INTEGER E1M(3),E1N(3)ISGN

C
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INTEGER WIURELATE
PARAMETER (WIR.E-2)
PARAMETER (PLATE-3)

C
COMMON/KDvIMEN/KNODESKEDGES,KFACES
COMMON/KDIMfWR/KWCRDS,KWSEGS
COMMON/CDIMEN/JNODESJEDGES,JFACES
COMMON/CDIWRIJWCRDSJWSEGS
COMMON/CONST/PKNJWUO4PX14PJEJWEO4P,X14PJ'U
COMMON/CONST1/KN1JWU14P,X14PWE,X14PIJWE14P,X14PWU
COMMON/NUMINT/XSWEA,WGHT

* C
EXTERNAL MAGNIGTAREAVDOTMAP1,MAP2
EXTERNAL SGNPOTJSNCDOT

C source triangles
* C

DO 2005 NO-1,KFACES
CALL VTXCRD2(NOR1iN)
AREAIN - GTAREA(RJJNPLATE)
CALL LENGTH(Rl1NJ..N)
CALL FACEDG2CNOEIN(1),EIN(2),EIN(3))

* C
C observation triangles
C

DO 2004 MO-1,JFACES
CALL VTXCRD1(MORl1M)
AREA1M - GTAREA(R11M1PLATE)
CALL CENTER(R11MRClMIPLATE)
CALL LENGTH(R11ML1M)
CALL FACEDG1(MOE1M(l),E1M(2),E1M(3))

C compute integrals
C

CALL NINT7B(R1 1NRC1MtCVECK0,CXSIK0,CETAK0,AREA1NDR)
* C

DO 2003 N1-1,PLATE
N(1) - MAP2(NON1,PLATE)
N(2) - MAP2(NON1+PLATEPLATE)
IF 1~)NE.OoR.N(2).NE.o) THEN

DO 2001 1-1,3
A1(I) - RIIN(L1) * CVECKO+

+ CR11N(I,2) - R11N(Li1) ) * CXSIKO+
+ CR11N(,3) - R11N(L1) ) *CETAKO

mI) - R11NCIN1)
RIMRCMCI) - RI) - RC1MCI)

2001 CONTINUE
CALL CROSS2(RC1MRIRCMXRI)
CALL CROSS9(RIRCMA1A3)
DO 2025 1-1,3

A10I) - A3ID + RCMXRICI) * CVECKO
* AlO) - ISGNCE1NCNl)) * L1N(N1)/C2*AREAIN) *A1(I)
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2025 CONTINUE
C

DO 2002 M1-1,PLATE
M~l) - MAPI(MOM1PLATE)
M(2) - MAPi(M0,Mi-,PLATEPLATE.)
IF (M(1Y.NBE.OR.M(2).NE0) THEN

CALL P1RHO(RlMM1RHQ1M)
A - X14PI * CDOT(RHO1MA1)
CX7 - ISGN(E1M(M1)) * L1M(M1) *A

C

IF (DR.LTL1M(1).OR.DLLM(2).OR.DR.LTL1M(3)) THEN

C do the 7-pt integration over the observation triangle
C

CF - 0
CFX - 0
DO 2051 11-1,7

DO 2050 JJ-1,3
RlM(JJ) - R11M(JJ,1) + (R11M(JJ,2)-R11M(JJ,1))IcXSI(Iu) +

+ (Ri 1M(JJ,3)-R1 1M(JJ,1))*ETACU)
RHO1MCJJ) - RlM(JJ)-R1 1MCJJM1)

2050 CONTINUE
CALL NuIT7B(R11NR1.CVECKoCXSIKoCErAKoAREAlNTRASH)

DO 2049 1-1,3
A10I) - R11NO,1) * CVECKO +

+ ( R11N(I,2) - R11NO,.1) ) * CXASIKO +
+ ( R11NO,3) - R11N(J1) ) * CETAKO

RI(1 - RIIN(LNI)
RIMRCMOl) - RIQ) - RIMOl)

2049 CONTINUE
CALL CROSS2(R1MXRIRCMXRI)
CALL CROSS3(RIMfRCMA1A3)
DO 2048 1-1,3
A1(I) - A3(I) + RCMXRIO1) * CVECKO
A10I) - ISGN(E1N(Nl)) *L1N(N1)/(4*AREA1N) *AMC)

2048 CONTINUE
A - X14PI *CDOT(RHO1MA1)

CFX - ISGN(E1M(M)) * L1MCM)/AREA1M A
CF - CF + CFX*WGHTM)

2051 CONTINUE

C CX7 - CF * AREA1M

ENDIF
C

DO 3001 J-1,2
DO 3001 K.1,2

IF (M(K).NE.o.AND.N(J)XNE.o) THEN
CZ(M(K),N(J)) - CZ(M(K),N(J)) + SONPOT(CX7,JK)/2

ENDIF
3001 CONTINUE

ENDIF
2002 CONTINUE
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ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C

TYPE *,' (C7 COMPLETED'
4 C

RETURN
END

C
SUBROUTINE ZPLPL8(CZ,JUNKNSNUNNS)

C
INTEGER JUNKNSNtNKNS
COMPLEX RIAIP 0SGNPOT
"CPLEX. CVECK1,CXSIK1,CETAK1,A2(3),A4(3),CDOTr
COMPLEX CZ(JUNKNSNUNKNS),CX8,CFCFX
COMPLEX KN1,JWU14PXl4PWEJWE14PX14PWTU
REAL PIKNJWU04PX14PJEJWEO4PX14PJ-UX14PI
REAL MAGNILGTAREAAREA1NVDOTAREA1MTRASH
REAL DRPOTRN1(3),RO1(3),L1M(3),L1N(3)
REAL RI lM(3,3),R1M(3),RC1M(3),RHO1M(3)RIIN(3,3)
REAL RI(3),RIMRCM(3),RCMXRI(3)
REAL XSI(7)ErA(7),WGM7)
INTEGER NNODESXNEDGESNFACESNWCRDSNWSEGS
INEER JNODESJEGESJFACESJWCRDSJWSEGS
INTEGER IJM(2)MO~l(2),N0,N1,MAPvAP
InEER E1M(3),E1N(3)JSGN

C
INTEGER WIRELATE
PARAMETER (WIRE-2)
PARAMETER (PLATE-3)

C
COMMON/DIMfEN/NNODESNEDGES,NFACES
COMMON/DIMWVR/NWCRDS,NWSEGS
COMMON/CDIEN/JNODESJEGES,JFACES
COMMON/CDIMWR/.JWCRDS,JWSEGS
COMMON/CONST/PLKNUJWU04PX14PJ,TWE04P,X14PJU
COMMON/CONSTI/KNIJWU14P,X14PWE,X4P4'WE14P,X14PWU
COMMON/NUMINT/XSIIEAIWGHT

C
EXTERNAL MAGNLGTAREAIVDOTAPMA1
EXTERNAL SGNPOTJSGNCDOT

* C
C source triangles
C

DO 2005 NO-l,NFACES
CALL VTXCRD(NOR1 N)

* ARBAlN - GTAREA(RIINIPLATE)
CALL LENGTH(R1 iNLIN)
CALL FACEDG(N,E1N(l),E1N(2),ElN(3))

C
C observation triangles
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C

DO 2004 MO-1,JFACES
CALL VTXCRDICMORlIM)
AREAiM - GTAREA(R11MPLATE)
CALL CENTER(R11MRC1M~PLATE)
CALL LENGTHCR11M-l1M)
CALL FACEDG1(MOE1M(1),E1M(2),E1M(3))

C
C compute integrals
C

CALL NINTMCR1NRC1MCVECK1,CXSIK1,CETAK1,AREAINR)
C

DO 2003 N1-1iPLATE
N(1) - MAP(NON1PLATE)
N(2) - MAP(NON1+PLATEPLArE)
IF 1).)NE~O.OR.N(2)INEO) THEN

DO 2001 1-1,3
A2(I) - R11N(L1) * CVECK1 +

+ C R11NCI,2) - R11NCI,1) )'CXSLK1 +
C R11N(I,3) - R11NCI.1) )CErAKi

RICI) - R11NCINl)
RIM1RCM(I) - RIQ) - RC1MCI)

2(401 CONTINUE
CALL CROSS2CRC1M=RCMXR[)
CALL CROSS3(RIMRCMA2,A4)
DO 2025 1-1,3

A2(I) - A40I) + RCMXRICI) * CVECK1
A20) - ISGN(E1N(N1)) *L1N(Nl)/(2*AREAlN) A2(I)

*2025 CONTINUE
C

DO 2002 M1-1,PLATE
M~l) - MP1(MOM1PLArE)
M(2) - MAP1(MOM+PAmPuLATE)
IF (M().NEO.OR.M,(2)Eo) THEN

CALL P1RHO(R1 1MM1,RHO1M)
A - -X14PI * CDOT(RHOlMA2)
CX8 - LSGN(E1M(M1)) * L1M(M1) * A

C
EF CDR.LTL1M(1).OR.DR.LT.LIM2).O.DRLTL1M(3)) THEN

C
C do the 7-pt integration over the observation triangle
C

CF - 0
CFX = 0
DO 2051 11-1,7

DO 2050 JJ-1,3
R1MCJJ) - Rli1MCJJ,1) + CR1 1M(JJ,2)-R1 1M(JJ,1))*XSI(fl) +

+ CR1 1MCJJ,3)-R1 1M(JJ,1))*ETrAOI)
RIHOIMCJJ) - R1M(JJ)-RIIM(JJM1)

2050 CONTINUE
CALL NIN7(R1 1NR1MCVECK1,CXSIK1,CEAK11NTRASH)

DO 2049 1-1,3
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A20I) - RIIN(L1) 'CVECK1 +
+ ( R11N(I2) - R11NCL1) ) * CXSLKI +
+ ( R11N(L) - RIINO,1) ) * CETAK1

RIQ) - Rl1N(INl)
RIMRCM(I) - RIGI) - RlM(I)

2049 CONTINUE
CALL CROSS2(RlMJURCMXRI)
CALL CROSS3(RIMRCM[.A2,A4)
DO 2048 1-1,3

A20) - A40) + RCMXRI(I) * CVECK1
A2(I) - ISGN(EIN(N1)) * LlN(N1)/(4*AREA1N) *A20I)

2048 CONTINUE
A - -X14PI * CDOMMRO1MA)
CFX - ISGN(E1M(M1)) * LlM(Ml)/AREAlM *A

CF - CF + CFX*WGHI)
2051 CONTINUE

CX8 - CF *AREA1M
* C

ENDIF
* C

DO 3001 J-1,2
DO 3001 K-1,2

IF ([K)N0ANDN(J).NE0) THEN
CZ(M(KXN(J)) - CZ(M(K),N(J)) + SGNPOT(KCX8,JK)/2

ENDIF
3001 CONTINUE

ENDIF
*2002 CONTINUE

ENDIF
* 2003 CONTINUE

2004 CONTINUE
2005 CONTINUE
C

TYPE *,' CZ8 COMPLETE1Y
* C

RETURN
END

C
SUBROUTINE ZPLPL9(CZJUNKNSKUNKNS)

C
INTEGER JUNKNSKUNKNS

* COMPLEX JIAPSGNPOT
COMPLEX CVECCXSICETACPHIAl(3),CDOT
COMPLEX CZ(JJNKNSKUNKNS),CX9,CFCF
COMPLEX KN14WU14PX14PWEJWE14PX14PWU
REAL PIKNJWUO4PX14PJE4WEO4PX14PTU~X14PI
REAL MAGNIGTAREAAREAlNVDOTAREA1MTRASH
REAL DRPOTRLN1(3),RO1(3),LlM(3),LIN(3)
REAL Ri 1M(3,3),R1M(3),RC1M(3),RHO1M(3),R1 iN(3,3)
REAL XSI(7),ETA(7),WGHTI(7)
INTEGER KNODESIKEDGESKFACESKWCRDSKWSEGS
INTEGER JNODESJEDGESJFACESJWCRDS4WSEGS

- - - - - - -
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INTGER LJMC2)MOM1,N(2),N0,N1MAP1,MAP2
INTEGER E1M(3),E1N(3),ISGN

C
INTGER WIRELATE
PARAMETE (WIR.E-2)
PARAMETE (PLATE-3)

C
COMMON/KDIMEN/KNODESKEDGES,KFACES
COMMON/KDMJWR/KWCRDS,KWSEGS
COMMON/CDIMEN/JNODESJEDGES,JFACES
COMMON/CDIWR/JWCRDS,JWSEGS
COMMON/CONSr/PKNJIJWUO4P,X14PJEJWEO4PX14PJ-U
COMMON/CONST/KN1U14P14PWE,X14PIJWE14PX14P~vU
COMMON/NUMINT/XSIEAWGHT

C
EXTERNAL MAGNLGTAREAVDO)T,MAAP2
EXTERNAL SGNPOTISNCDOT

C
C source triangles
C

DO 2005 NO-1,JFACES
CALL VTXCRD1(NOR1iN)
ARBEiN - GTAREA(R11NPLATE)
CALL LENGTH(R11NL1N)
CALL FACEDG1(NOE1N(1)E1NC2),E1N(3))

C
C observation triangles
C

DO 2004 MO-1,KFACES
CALL VTXCRD2(M0ORl1M)
ARBAiM - GTAREA(R11MPLATE)
CALL CENTER(R11MRC1MPLATE)
CALL LENGTH(R11MJlM)
CALL FACEDG2(MOE1M(1),E1M(2),EIM(3))

C
C compute integrals
C

CALL NINT(R11NRC1MKCVECCXSICETAyOTCPH1,
+ RLN1,ROIAREA1NDR)

C
DO 2003 Nl-1,PLATE

N(1) - MAP1(NON1PLATE)
N(2) - MAPI(NON1+PLATEPLATE)
IF CN(1).NE.0.OR.N(2).NE.O) TMEi

P - ISGN(E1N(Nl)) *L1N(N1)/AREA1N * JI* X14PJE *CPIH

DO 2001 1-1,3
AlO) - ( Rl1N(,1) - R11N(IN1) )*CVEC +

+ ( R11NOI,2) - R11N(I1) ) * CXSI +
+ ( R11NCI,3) - R11N(I1) ) * CETA +
+ C ROlI) - R11N(IN1) )*POT + RLNi(I)

A10) - ISGN(E1NCN1)) *L1NCN)/(2*AREA1N) *AlCI)

2001 CONTINUE
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DO 2002 M1-1,PLATE

M(2) - MAP2(MOM1,PLATUL)E

IF (M1).NE.OR.M2).NE0) THEN
CALL PiRH-OCRi1MM1,RHi1M)
A - J1 JWU04P * GDOT(LOIMA1)
CX9 - OSN(ElM(M1))*LIM(M1)'(A+P)

IF (DR.LT.L1MC).OR.DR.LTL1M(2).OR.DRLT.LIM(3)) THEN

C do the 7-pt integration over the observation triangle
C

A CF - 0
CFX - 0
DO 2051 H1-1,7

* DO 2050 JJ-1,3
R1M(JJ) - Ri 1M(JJ,1) + (Rli1M(JJ,2).R11M(JJ,1))*XSI(ll) +

+ (RI 1M(JJ,3)-Ri iM(JJ1))IETACII)
RHO1M(JJ) - R1MCJJ)-R11M(JJM1)

2050 CONTINUE
CALL NINT7(R1 1NR1CVECCXSLCETAPOTCPHI,

+ RLN1,R01,AREAINTRASH)
P - ISGN(E1N(N1)) * L1N(N1)/AREA1N * JI * X14PJE *CPIH

DO 2049 1-1,3
AlCI) - C R11NCL.1) - R11NNI) )*CVEC +

+ C Rl1NCL2) - R11NJI) ) * CXS +.
+ ( R11NCI,3) - R11NCI1) ) * CETA +
+ ( ROI) -R11NCINi) *POT + RLN1I)

AI) - ISGN(E1NCNl) L1NCNi)/C4*AREA1N) * AMC)
2049 CONTINE

A - JI * JWTJ04P * CDOT(RHO1MA1)
CFX - ISGNCE1M(M))*L1MCM)/AREAlM*(A+P)
CF - CF + CF*WGHflM)

2051 CONTINU
CX9 - CF * AREA1M

C
ENDIF

C
DO 3001 J-1,2
DO 3001 K-1,2

IF (MK)3NEOAND.N(J)NFEo) THEN
CZC(J),MCK)) - CZCNCJ),MCK)) + SGNPOT(CX9,JK)/2

ENDIF
3001 CONTINUE

ENDIF
*2002 CONTINUE

ENIF
2003 CONTINUE

* 2004 CONTINU
2005 CONTIUE
C



Appendix D. EFIE2PC Computer Program 184

C
OPEN(FILE-'CZ3',STATUS-NEW,DISPOSE--'DELEE'

+ UNIT-23,FORM-'UNFORMKITE')
DO 147 J-1,KUNKNS

147 WIRrTE23XCZCIJ)J-1,JUNKNS)
C
C

TYPE *,' CZ9 COMPLETEY
C

RETURN
END

C
SUBROUTINE ZPLPL1O(CZJUNKNSKUNKNS)

C
INTEGER JUNKNSKUNKNS
COMPLEX JAPSGNPOT
COMPLEX CVECKOCXSIKOCErAKOA1(3),A3(3),CDOT
COMPLEX CZ(JUNKNSKUNKNS),CX10,CFCFX
COMPLEX KN1,JWU14PX14PWEJWE14PX14PWrU
REAL PIWKN4WU4PX14PJEJWEO4PX14PJUX14PI
REAL MAGNIGTAREAAREAINVDOTAREA1MKTRASH
REAL DRPOTRLN1(3),RO1(3),L1M(3),L1N(3)
REAL RI 1M(3,3),RIM(3),RClM(3),RHOIM(3),R1 1N(3,3)
REAL RI(3),RJMRCM(3),RCMXRI(3)
REAL XSI(7),EFrA(7),WGHT(7)
INTEGER KNODESKEDGESKFACESKWCRDSKWSEGS
INTEGER JNODESJEDGESJFACESJWCRDSJWSEGS
INTEGER LJM(2),MOM1N(2),$0$1,MAP1,MAP2
INTEGER ElM(3).ElN(3)JSGN

C
INTGER WIRELATE
PARAMETER (WIRE-2)
PAR.AMEfTER (PLATE-3)

C
COMMON/KDIMEN/KNODESKEDGES,KFACES
COMMON/KDBIMWRIKWCRDSKWSEGS
COMMON/CDIMN/JNODESJEDGES,JFACES
COMMON/CDDMWRIJWCRDS,JWSEGS
COMMON/CONST/PI,KNJIVWU4P,X14PJEIWE4PX14PJU
COMMON/CONSTI/KN1IWU14P,X14PWE,X14PIJWE14P,X14PWU
COMMONi/IUMINT/XSIEAWGHT

C
EXTERNAL MAGNLGTAREA.VDOTMAP1MAP2
EXTERNAL SGNPOTJSGNCDOT

C
C source triangles
C

DO 2005 NO-1,JFACES
CALL VTXCRD1(NOR1 N)
AMEAIN - GTAREA(R11NPLATE)
CALL LENGTH(R1 1NLlN)
CALL FACEDG1(NOEIN(l),E1N(2),EIN(3))
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C
C observation triangle-s
C

DO 2004 MO-1,KFACES
CALL VTXCRD2(MOR1 M)
AREA1M - GTAREA(R11MPLATE)
CALL CENTER(R11MRC1MPLATE)
CALL LENGnh(R11ML1M)
CALL FACED)G2(MOE1M(1),E1M(2),E1M(3))

C
C compute integrals
C

9 ~CALL NINT7BR1 NRC1MPCVECK0,CXSIKOCETAKOAREAlNDR)
C

DO 2003 NI-1,PLATE
N(1) - MAP1(NON1,PATE)
N(2) - MAPiCNON1+PLATEPLATE)
IF CN(1).NE~o.OR.N(2)INEO) THEN

DO 2001 1-1,3
AlO) - R11N(L1) *CVECKO +

+ ( R11NCI,2) - RI1N(I1) ) * CXSIKO +
+ ( R11N(I,3) - Rl1NO.1) ) *CETAKO

RIO) - R11NON1)
RUMRCMOI) - RIO) - RC1MO)

* 2001 CONTMNE
CALL CROSS2(RC1M4RIRCXRI)
CALL CROSS3(RIMCMA1,A3)
DO 2025 1-1,3

A10) - A3O) + RCMXRI(I) * CVECKO
A10) - ISGN(E1N(N1)) * L1N(N1)/(2*AREA1N) *A1(I)

2025 CONTINUE
DO 2002 M1-1,PLATE

MWi - MAP2(MOM1PLATE)
M(2) - MAP2(MOMI+PLATEPLATE)
IF CM().NE~O.OR.M(2)NE~O) THEN

CALL P1RHO(R11M,IJUOlM)
A - X14PI * CDOT(HO1MIA1)
CXIO - ISGN(EIM(M1)) * L1M(M1) * A

C
IF CDR.LT.L1MC).OR.DR.LTL1M(2).OR.DR.LTL1M(3)) THEN

C
* C do the 7-pt integration over the observation triangle

C
A CF-O0

CFX - 0
DO 2051 11-1,7

DO 2050 JJ-1,3
R1MCJJ) - Ri 1M(JJ,l) + (Ri iMCJJ,2)-Ri 1M(JJ,1))*XSI(11) +

+ (RlI1M(JJ,3)-R1 1M(JJ,1))'ETA(11)
RHO1M(JJ) - R1M(JJ)-R11M(JJM1)

2050 CONTINUE
* ~CALL NINT7BCR11NR1,CVECKoCXSIKocErAKoAREA1NTRASH)



Appendix D. EFIE2PC Computer Program 186

DO 2049 1-1,3
AMC) - RlIN(LI) * CVECK0 +

+ ( Rl1NCI,2) - R11N(L1) ) * CXSIKO +
+ ( R11N(L3) - R11N(I,1 ) * CETAKO

R.C0) - R11N(IN1)
RIMCM(I) - RIQ) - RIM(I)

2049 CONTINUE
CALL CROSS2(R1MJURCMXRI)
CALL CROSS3(RMRCM,A1,A3)
DO 2048 1-1,3

A10I) - A3(I) + RCMXRIQ) * O VECK0
A10I) - ISGNCE1N(N1)) * L1N(N1)/(4*AREAlN) sAMC)

2048 CONTINUE
A - X14PI * CWIOM[,A)
CFX - ISGN(ElM(M1)) * LlM(M1)/AREAlM A
CF - CF +CFX*WGHT(I)

2051 CONTINUE
CX10 - CF *AREAlM

C
ENDIF

C
DO 3001 J-1,2
DO 3001 K-1,2

IF (MCK)N0ANMN(J).NE.o) THEN
CZ(NCJ),M(K)) - CZ(NCJ),M(K)) + SGNPO'1(CXIJK)/2

ENDIF
3001 CONTINUE

ENDEF
2002 CONTINUE

ENDEF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C
C

OPENFILE-'CZ7',STATUS-'NEW'DISPOSE-'DELIrE
+ UNrT-27,FORM-UNFOR.MATTED)

DO 147 J-1,KUNKNS
147 WRITE(27XCZOJJIUNKNS)
C

C TYPE *,' CZ1O COMPLETED'

C
RETURN
END

C
SUBROUTINE ZPLPL11(CZIKUNKNS)

C
INTEGER KUNKNS
COMPLEX JIAPSGNPOT
COMPLEX CVECCXSLCETACPHiA1(3),CDOT
COMPLEX CZ(KUNKNSKUNKNS),CX1 1,CFCFX
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COMPLEX KN1,JWU14PX14PWEJWE14PXl4PWU
REAL PIKNJWUO4PX14PJEJWEO4PX14PJUX14PI
REAL MAGNLGTAREA.AREA1NVDOTAREA1M.TRASH
REAL DRPOTLN1(3),ROl(3),LIM(3),LIN(3)
REAL Ri 1M(3,3),R1M(3),RC1M(3)RHO1M(3),R1 1N(3,3)
REAL XSI(7),FrA(7),WGHT( 7)
INTMGER KNODESKEDGESKFACESJ(WCRDSKWSEGS
INTGER I4,KM(2),MOM1,N(2),NON1MAP2,E1M(3),E1N(3),ISGN

C
INTEGER WVIREIPLATE

* PARAMETER (WIRE-2)
PARAMEME (PLATE-3)

C
* COMMON/KDINKNODESKEDGES,KFACES

COMMON/KDIMR/KWCRDS,KWSEGS
COMON/CONS/PINJIVU04PX14PJEJWE4P,X14PJ'U
COMMQN/CONSrl/KNIJWU14P,X14PWE,X14P,JWE14P,X14PWU
COMMON/NUMINT/XSIETA.WGHT

C
EXTERNAL MAGN1LGTAREAVDOTMAP2
EXTERNAL SGNPOTJSGNCDOTr

C
C source triangles
C

DO 2005 NO-1,KFACES
CALL VTXCRD2(NOR1IN)
AREAlN - GTAREA(R11N[PLATE)
CALL LENGTH(R1 1NJAN)
CALL FACEDG2(NOE1N(1),E1N(2),E1N(3))

* C
* C observation triangles
* C

DO 2004 MO-1,KFACES
CALL VTXCRD2(MOR1 iM)
AREAiM - GTAREA(R11MPLATE)
CALL CENTER(R1iMIRClMIPLATE)
CALL LENGTH(Rl1ML1M)
CALL FACEDG2(MOE1M(1),E1M[(2),E1M[(3))

C
C compute integrals
C

CALL NINT(R11NRC1MCVECCXSICEAjPOTCpK
+ RLN1,RO1AREA1NDR)

C
DO 2003 Ni-iPLATE

NO1) - MAP2(N0,N1,PLATE)
N(2) - MAP2(NO,N1+PLATULATE)
IF (N(l).NE.OoR.N(2)NEo) TH-EN

P - ISGN(E1N(N1)) *L1N(N1)/AREA1N * 11 * X14PJE *CPHI

DO 2001 1-1,3
A10) - ( R1lNl) - RIIN(Il) )*CVEC +

+ CR11N(IL2) - R11N(I1) )*CXSI +

*C. 
.$ . . .- . * . 9
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+ (R11N(I,3) - R11N(L1) )*CETA +
+ CROWC) - R11N(IN1) PO + 'x RLN1(1)

AICI) - ISGN(E1N(N1)) *LlN(N1)/(2*AREA1N) *AlCI)

2001 CONTINUE
C

DO 2002 MI-iPLATE
MWi - MAP2(M0,M1YLATE)
M(2) - MAP2CMOMi+PLATELATE)
IF M1).NE.OoR.M(2).NEO) THEN

CALL PlRHO(RI1MM1,RHO1M)
A - JI * j'J-W04P * CDOIR1O1MA1)
CX11 - SGNCElM(M))*LIMCMl)I(A+P)

IF (DR.LT.L1MC1).oR.DRLTJl1MC2).ORDnR-T.LlM(3)) THEN

C do the 7-pt integration over the observation triangle
C

CF - 0
CFX - 0
DO 2051 U1-1.7

DO 2050 JJ-1,3
R1MCJJ) - R11MCJJ,l) +~ CRIIM(JJ,2)-R11M(JJ,1))'*XSI(ll) +

+ CR1 1MCJJ,3)-RI 1MCJJ,1))KETA(fl)
RHO1M(JJ) - RlMCJJ)-RllM(JJM1)

2050 CONTINU
CALL NINT7CR1 1NR1MLCVECCXSICEAPOTCP1I,

+ RLN1,R01AREA1NTRASH)
P - ISGN(ElN(N1)) *L1NCN)/AREA1N * JI* X14PJE CPIH
DO 2049 1-1,3

AIM) - C R11NCI,1 - R11NCINl) )*CVEC +
+ CR11NCI,2) - R11N(I1) ) * CXSI +
+ (R11NCI3) - R11NCI,1) ) * CETA +i
+ CROlI) - R11NCIN1)) * POT + RLNI(i)

AlC) - ISGN(E1NCNl)) *L1N(N1)/(4*AREA1N) *A1()
2049 CONTNUE

A - JI * JWUO4P * CDOT(HOlMA1)
CFX - ISGNCEIMCM))IL1M(M1)/AREA1M*(A+P)
CF - CF + CFX*WGHT(M1

2051 CONTINUE
CXli - CF * ARLEAM

ENDIF

DO 3001 J-1,2
DO 3001 K-1,2

IF (M(K)24FO.AND.N(J)NE~O) TMEN
IF(MCK).NE.NCJ)) THEN

CZ(MCK),N(J)) - CZCM(K),N(J)) + SGNPOT(CX11,JK)/2
CZC(q(J),MCK)) - CZ(NCJ),M(K)) + SGNPOT(CXI'',JK)/2

ELSE
CZ(MCK),NCJ)) - CZ(MCK),N(J)) + SGNPOI(CX11,JK)

ENDIF
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ENDIF
3001 CON'TINUE

ENDIF
2002 CONTINUE

ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C

OPEN(FILE-'CZ1 1',SATUS-'NEWDSPOSE.'DELF7E,
+ UNIT-31,FORM-UNFORMATIY)

DO 147 J-1,KUNKNS
147 WRrTE31XCZ(IJ),I,)
C
C

TYPE *: CZII COMPLETElY
C

RETURN
END

C
SUBROUTINE ZPLPL13(CZJUNKNSNUNKNS)

C
ITEGER JUNKNSNUNKNS

COMPLEX RAXGNPOT
COMPLEX CVECCXSICETACPIHIA2(3),CDOT
COMPLEX CZ(JUNKNSMNNKNS),CX13,CFCFX
COMPLEX KN1JWU14PX14PWEJWE14PX14PWU
REAL PIIKNJWUO4PX14PJEJWEO4PX14PJUX14P1
REAL MAGNLGTAREAAREA1NVDOTAREA1MTRASH
REAL DR.POTRN1(3),RO1(3),LIM(3),L1N(3)
REAL RlI1M(3,3),R1M(3),RC1MC3),RHO1M(3),R1 1N(3,3)
REAL XSI(7),ETA(7),WGHT(7)
RNTEGER NNODESNEDGESNACESNWCRDSNWSEGS

* INTEWGER JNODESJEDGESJFACES.JWCRDSJWSEGS
INTEGER JK,(2),MOM1,N(2),NO,N1,MAPMAP1
INTEGER E1M(3),ElN(3),ISN

C
INEER WIREPATE
PARAMETER (WIRF-2)
PARAMETER (PLATE-3)

C
COMMONIDIMEN/NNODESNEDGES,NFACES
COMMON/DBMWR/NWCRDS,NWSEGS
COMMON/CD~vIEN/JNOD-SJEDGESJFACES
COMMON/CDIMWR/J-WCRDS,JWSEGS
COMMON/CONST/PIKN4IUWU04P,X14PJEJWE04P,X14PJU
COMMON/CONST1/KN1,JWU14P,X14PWE,X14PIJWE14P,X14PWU
COMMON/NUMINTIXSIEA.WGHT

C
EXTERNAL MAGNI.GTARAVDOTIMAPMAPl
EXTERNAL SGNPOTJGNCDOT
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C
C source triangles
C

DO 2005 NO-1,JFACES
CALL VTXCRD1(N0OR1 N)
AREA1N - GTAREA(RllNPLATE)
CALL LENGTH(R1 1NLAN)
CALL FACEDG1(NO.E1N(1),ElN(2),E1N(3))

C
C observation triangles
C

DO 2004 MO-1,NFACES
CALL VTXCRfl(MOR11M)
AREA1M - GTAREA(R11MPLATE)
CALL CEN'rER(R11MRC1MPLATE)
CALL LENGTH(R11ML1M)
CALL FACEDG(MOE1M(l).E1M(2),E1M(3))

C
C compute integrals
C

CALL NINTA(R11NRCIMCVEC1,CXSI1,CETA1,POTCPIHI,
+ RLN1,RO1,AREA1NDR)

* C
DO 2003 N1-1,PLATE

N(1) - MAP1(NOs1PLATE)
N(2) - MAP1CNON1+PLATELATE)
IF CN(1NE.0.OR.N2.NEMO) THEN

P - ISGN(E1N(N1)) * L1N(N1)/AREA1N * (-Jr) * X14PWE *CPIH

DO 2001 1-1.3
A20) - ( R11NCl1) - Rl1N(LN1) ) CVEC1 +

N + ( R11N(L2) - R11NCI1) ) * CXSII +
+ C R11NCI,) - R11NCL1) ) * CETAl +
+ C ROWC) - RI1NCIN1)) * POT + RLNi(I)

A20I) - ISGNCEINCN1)) *L1N(N1)/C2*AREA1N) *A20I)

2001 CONTINUE
C

DO 2002 M1-1,PLATE
M~l) - MAP(MOMIPLATE)
M(2) - MAP(MOM1+PLATELATE)
IF 1).NEFoORMC2)IMO) THEN

CALL P1RHOCR11MM1RHO1M)
4 A - -I * JWU14P * CDOTHO1MA2)

CX13 - ISGN(EiMCM))L1M(M1)(A+P)
C

IF (RLT.L1M~l).OR.DRLT.L1MC2).OLDRLT.L1M(3)) THEN
C
C do the 7-pt integration over the observption triangle
C

CF - 0
CFX - 0
DO 2051 i1-1,7

DO 2050 JJ-l,3
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R1M(YJ) - RI IMCJJ,1) + CR1 1MCJJ,2)-R1 1M(JJ,1))*XSIWI) +
+ (R11M(JJ3)-R1 1M(JJ,1))MEA(II)

RHO1M(JJ) - R1M(JJ)-R1 1MCJJM1)
2050 CONTINUE

CALL NINTA(R11NR1?4CVECI1,CslC1,APOTCPH1,
+ RLN1,R01AREAlNTRASH)

P - ISGNCE1NCN1)) *L1N(N1)/AREA1N * WDli* X14PWE *CPH1

DO 2049 1-1,3
A201) C- R11NCI1) - R11NCIN1) )*CVECI +

+ CR11NCJ,2) - R11NC1)) * CXSI1 +
+ CR11N01,3) - RilNQl) * CEr!Al +
+ CROWC) - R11NCIN1) )*POT + RLN1CI)

A2C0) - ISGN(E1NCN1)) *L1N(N1)/C4*AREA1N) *A20I)
2049 CONTINUE

A - -JI * JWU14P *CDOT(RHO1MA2)
CX- ISGNCElMCM))LIMCM)/AREA1M*(A+P)

CF - CF + CFX*WGHT(II)
2051 CONTINUE

CX13 - CF * AREAIM
C

ENDIF
C

DO 3001 J-1,2
DO 3001 K-1,2

IF WK).NE.0AND.NCJ)NEO) THEN
CZ(N(J),MCK)) - CZCN(J),MCK)) + SGNPOT(CX13,JK)/2

ENDIF
3001 CONTINUE

ENDIF
2002 CONTINUE

ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUE
C
C

OPEN(FE-'4'.SrATUS-'DISOSE. DELIrE,
+ UNrr-24,FORM- UNFORM.A1TEJ)

DO 147 J-1,NUNKNS
147 WRrrE24XCZ(IJflIJuNKNS)
C
C

TYPE *,' CZ13 COMPLETED'
C

RETURN
END

C
SUBROUTINE ZPLPL14(CZ,JUNKNSNUNKNS)

C
INTGER JUNKNSNUNKNS
COMPLEX JWGNPOT
COMPLEX CVECK1,CXSIK1,CETAK1,A2(3),A4(3),CDO'r
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COMPLEX CZ(JNKNSINUNKNS),CX14,CFCFX
COMPLEX KN1JWU14PX14PWEJWE14PX14PWU
REAL PIKNJWU04PX14PJEJWE04PX14PJUX14PI
REAL MAGNLGTAREA.AREA1NVDOTARE1 I MTRASH
REAL DR.POTRLN1(3),RO1(3),L1M(3),LIN(3)
REAL Ri 1M(3,3),RIMC3),RC1M(3),RHO1MC3),R1 1N(3,3)
REAL RI(3),RIMRCM[(3),RCMXRI(3)
REAL XS(7)ETAC7),wGHTC7)
INTMGER NNODESNED)GESNFACESNWCRDSNWSEGS
DNTEER INODESJEDGES4FACESJWCRDS4WSEGS
INTEGER MJX(2),M0A1,N(2),N0,N1,MAPMAP1
ITEER ElMC3),E1NC3),ISN

C
INTEGER WIREPLATE
PARAMETER (WI.E-2)
PARAMETER CPLATE-3)

C
COM[M[ON/DBMEN/NNODESNEDGESNACES
COMMON/DIMWR/NWCRDSNWSEGS
COMN4~INJODSEGSJAE

COMMON/CDIMWR/JWCRDSJWSEGS
COMMON/CONSr/PI,KNJITWUO4PX14PJEJTWEO4P,X14PJU
COMON/CONSr/KNIJWU14P,~X14PWE,X14PUWE14P,X14PWU
COMMON/NUMINT/XSIEAWGHT

C
EXTERNAL MAGNIGTAREAVDOTMAP>MAP1
EXTERNAL SGNPOTjGNCDOT

C
C source triangles
C

DO 2005 NO-1,4FACES
CALL VTXCRD(NI1iN)
ARBAiN - GTAREA(R11NPLATE)
CALL LENGTH(R11NL1N)
CALL FACEDG1(NOE1N(1),ElN(2),E1N(3))

C
C observation triangles
C

DO 2004 MO-m1,NFACES
CALL VTXCRD(MO,R11M)
AREA1M - GTAREA(R11MPLATE)
CALL CENTER(R11MRC1MPLATE)
CALL LENGTH(R1IIMLIM)
CALL FACEDG(MO0,E1M(1),EM[(2),E1M(3))

C
C compute integrals
C

CALL NINTC(R iNRCi~lCVECK,CXSIK,CErAKiAREAiNDJR)
C

DO 2003 Ni-iPLATE
NOi) - MAPi(NON1PLATE)
NC2) - MAP1(NO,N14-PLATEIPLATE)
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IF (N)Io.ORNUC)NEO) TME
DO 2001 1-1,3

A20I) - R11NCI1) * CVCK +
+ ( RI1N(L2) - R11N(I,1 ) * CXSuI1 +
+ ( RI1N(L3) - R11N(I.1) ) * CEAKi

RIO) - R11NNI)
RIMRCMQ) - RIO) - RC1M(I)

2001 CONTINUJE
CALL CROSS2(RC1MRLCMXRI)
CALL CROS3(RIMRCMA2,A4)
DO 202 1-1,3

A2O) - AMWI + RCMXRIO * CVECK1
A2C1) . ISGN(EN(N1)) *L1N(N1)/C2*AREA1N) A2(1)

2025 CONTINUE
DO 2002 Mi-1PLATE

M(D) - MAP(M0M1IPLATE)
* M(2) - MAP(MOM1+PLATEPLATE)
* ~IF CMC).NE..OR.MC)NE.0) THEN

CALL PIRHOCRI1MM1,RHO1M)
A - -XI * CDQTCRHO1MA2)
CX14 - ISGNCE1M(M1)) * L1M(M1) * A

IF (DRLLT.LM(1).ORDL.LTLM2).OR.DL.LT.LMC3)) THEN

C do the 7-pt integraton over the observation triangle

Cp- 0
CFX - 0
DO 2051 U.1,7

* DO 2050 JJ-1,3
* R1M(JJ) - R11M(JJ,1) + (R11M(JJ,2)-Rl1M(Jn,1))*XSIOII) +

+ (Ri 1M(JJ,3)-R1 1M(JJ,1))IETA(ll)
RHO1M(JJ) - R1M(JJ)-RliM(JJM1)

2050 CONTINUE
CALL NINTC(R1 1NR1MCVECK1,CXSIK1,CErAK1,AREAiNTRASH)

DO 2049 1-1,3
A20) - R11NO,1) * CVECK1 +

+ ( R11NO1,2) - RilN(Il) ) * CXSIKi +
+ C R11NCL3) - RIlNW) ) * CETAK1

RIO) - R11NCLN1)
RMh4CMOl) - RIO) - RiMO)

2049 CONTINUE
CALL CROSS2CR1M=RCMXRI)
CALL CROSS3CRIMCMIA2,A4)
DO 2048 1-1,3

A20) - A40I) + RCMXRICI) * CVECK1
2042Q) . ISGNCE1NCN1)) *L1NCN1)/(4*AREA1N) A20
2048 CONTINUE

A - -X14PI * CDOT(HO1MA2)
CFX - ISGN(E1MCM1)) *L1M(M1)/AREA1M *A

CF - CF + CFX*WGHT(II)
2051 CONTINUE
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CX14 - CF * AREA1M
C

ENDIF
C

DO 3001 J-1,2
DO 3001 K-1,2

IF (M(K) .AND.N(J).NEO) TH-EN
CZ(N(J),M(K)) - CZ(N(J),M00)) + SGNPO'r(CX14,JK)/2

ENDIF
3001 CONTINUE

ENDIF
2002 CONTINUE

ENDIF
2003 CONTINUE
2004 CONTINUE
2005 CONTINUJE
C
C-

OPEN(FIL-Z8'$rTATUS-NEW,DISO-'DELFI,
+ UNIT-28,FORM- UNFORMA [E'

DO 147 J-1,NUNKNS
147 wRrTE28XCZ(IJ)J-1,JUNKNS)
C-

* C
TYPE *: CZ14 COMPLFEVl

C
RETURN
END

* C
SUBROUTINE ZPLPL16(CZNUNKNS)

C
INTEGER NUNKNS
COMPLEX JIAPSGNPOT
COMPLEX CVEC1,CXSI1,CEA1CPIU1,A2(3),CDOT
COMPLEX CZ(NUNKNSNUNKNS),CX16,CFCFX
COMPLEX KN1JWU14PX14PWETWE14PX14PWU
REAL PLKNJWUO4PX14PJEJWEO4PX14PJUX14PI
REAL MAGNIGTAREAAREA1NvDoTAREAIlKTRAsH
REAL DRPTRALN1C3),RO1(3),L1M(3),L1N(3)
REAL RlI1M(3,3),R1M(3),RC1M(3),RHO1M3),R1 N(3,3)
REAL XSC7),ETA(7),WGHK7)
INTEGER NNODESNEDGESNFACESNWCRDSNWSEGS
INTEGER LJh2,Ol()NNI"EM3,I()W

C
INTEGER WIREPLATE
PARAMETER (Wlx.E-2)
PARAMETER (PLATE-3)

C
COMMON/DIMEN/NNODESNEDGES,NFACES
COMMON/DIMWRIWNWCRDS,NWSEGS
COMdMON/CONSTPIKNJIJWUO4P,X14pjEYjwEo4p,x14PJU
COMMON/CONSTI/KN14WU14P,X14PWE,X14PIJWE14P,X14PWU
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COMMON/NUMINT/XSIZIrA.WGHT
C

EXTERNAL MAGNIGTAREAVDOT,WA
EXTERNAL SONPOTJGN~C~cr

C
C source triangles
C

DO 2005 NO-1,NFACES
CALL VTXCRD(NOR11N)
AREA1N - GTAREACR11NPLATE)
CALL LENOTHCRI1NL1N)
CALL FACEDG(NOElN(1),ElN(2),E1N(3))

C
C observation triangles
C

DO 2004 MO-iNFACES
* ~CALL V1A%4UAJV1UIMV1

AREAIM - GTAREACR11MPLATE)
CALL CENTER(RIlMIRCiMIPLATE)
CALL LENGTH(R11ML1M)
CALL FACEDG(MO.E1M(l),E1M(2),E1M(3))

* C
C compute integrals

* C
CALL NINTA(Rl 1NRC1,CVIEC1,CXSI1,CETA1,POTCPHI,

+ RLN1,RO1AREA1NDR)
C

DO 2003 N1-1,PLATE
N(1) - MAP(NON1PLATE)
N(2) - MAP(NONI+PLATEPLATE)
IF (N(1)NEMo.OR.N(2).NE~o) THEN

P - ISGNCE1N(N1)) * LlN(N1)/AREA1N * JI * X14PWE *CPHI1

DO 2001 1-1,3
A20) - ( Rl1N(11) - R11N(IN1)) CVEC1 +

+ ( Rl1N(L2) - Rl1NOQl) ) * CXSII +
+ C R1lN(I.3) - R11N(I,1) ) * CETAl +
+ ( ROWC) - R11NCIN1)) * POT + RLN1CI)

A20I) - ISGN(E1NCN1)) SL1N(Nl)/C2*AREA1N) A20
2001 CONTINUE

4 C
4, DO 2002 MI-IPLATE

M(1) - MAP(MOIM1PLATE)
MC2) - MAP(MOM1+PLATEPLATE)
IF (M(1)INE..ORM2).NE0) THEN

CALL P1RHOCR11MM1RHO1M)
A - JI * JWIU14P * CDOT(HO1MA2)

4 CX16 - ISGN(E1MCM))"L1M(M1)(A+P)
C

IF (DR.LTJAlMC1).OR.DL.LT.L1MC2).OL-DR.LT.LIMC3)) THEN
C
C do the 7-pt integration over the observation triangle
c
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cF - 0
CFX - 0
DO 2051 H1-1,7

DO 2050 JJ-1,3
R1M(JJ) - Ri 1M(JJ,1) + (Ri 1M(JJ,2)-R1 iM(JJ,1))*XSI(11) +

+ (Ri iM(JJ,3)-R1 1m(JJl))*ETA11
RHO1M(JJ) - R1M(JJ)-R11M(JJM1)

2050 CONTINUE
CALL NINTMA(R1IINR1MCVECI~CXSI1,CETIPOTCFIH,

+ RLN1,RO1,AREA1NTRASH)
P - ISGN(E1N(N1)) * LIN(Ni)/AREA1N * 11 * X14PWE CPI1
DO 2049 1-1,3

A20) - ( R11N(I1) - RI1N(LN1) )*CVEC1 +
+ ( R11N(L2) - R11N(I.1) ) * CXSII1
+ ( R1N(L3) - RliNCI,1) ) * CEAl+
+ (CRoW -Rl1NON))*sPOTr+ RLN1O1)

A20I) - LSGN(E1N(N1)) *L1N(Ni)/(4*AREA1N) * A2(I)
2049 CONTINE

A - JI * JWVUi4P *CDOT(RHOIMA2)
CFX - ISGN(E1M(M1))*rL1M(M1)/AREA1M*(A+P)
CF - CF + CFX*WGHTII1)

2051 CONTINUE
CX16 - CF * AREA1M

C
ENDIF

C
DO 3001 J-1,2
DO 3001 K-1,2

IF (MK)NE~OAND.NCJ)NE~O) THEN
IF(M(K)NEJNCJ)) TMEN

CZ(M(K),N(J)) - CZ(M(K),NCJ)) + SGNPOT(CX16,JK)/2
CZ(N(J),M(K)) - CZ(N(J),M(K)) + SGNPOT(CX16,JK)/2

EFT
CZ(M(K),NCJ)) - CZ(M(K),N(J)) + SGNPOT(CX16,K)

ENDIF
ENDIF

3001 CONTINUE
ENDIF

2002 CONTINUE
ENDIF

2003 CONTIUE
2004 CONTINUE
2005 CONTINUE
C

OPEN(F-'CZ16',STATUS-NEW,DSPOSE-DELETE,
+ UNrT-36,FORM-UNFORMA ITED')

DO 147 J-INUNKNS
147 WRrTE36XCZ(LJ),I-1XJ
C
C

TYPE ,'CZ16 COMPLET7W
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C
RETURN
END

C
C

COMPLEX FUNCTION SGNKPOPM[1,N1)
C USED FOR MULTIPLE EDGE CONNECTIONS

INTEGER M1,N1
COMPLEX P
SONPOT - P
IF CM1NE.1 SONPOT -- SGNPOT
IF (N1.NE.1) SONPOT -- SGNPOT
RETURN

C
C vector functions
C
C for use with z-matrix
C

SUBROUTINE COPY(V1,V2)
REAL Vl(3),V2(3)
INTEGER I

DO 2001 1-1,3
* V2(I)-Vl(I)

2001 CONTINUE
* RETURN

END
C

REAL FUNCTION VDOT(V1V2)
INTEER I
REAL Vl(3),V2(3)

VDOT - 0
DO 2001 1.1,3

VDOT - VDOT +Vl(I)*V2(I)
2001 CONTINUE

4 RETURN
END

* C
COMPLEX FUNCTION CDOT(1,V2)
INTEGER I
REAL V1(3)
COMPLEX V2(3)

CD(YT - 0
DO 2001 1-1,3
COOT - CDOT + V1(I)*V2(I)

2001 CONTINUE
* RETURN

END
C

REAL FUNCTION MAGNI(V
REAL VDOT
REAL V(3)
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EXTERNAL VDOT
MAGNI-SQRT(VDOT(VV))

RETURN
END

C
SUBROUTINE UNMIV1,V2)
INTEGER I
REAL V(3),V2(3)
REAL MAGNIR
EXTERNAL MAGNI

R-MAGNI(Vi)
DO 2001 1-1,3
V2(I)-V(I)/R

2001 CONTINUE
RETURN
END

C
SUBROUTINE CENTER(VTXV,CASE)
REAL VTX(3,3),V(3)
INTEGER L4,CASE

DO 2002 1-1,3
v(0-o
DO 2001 J-1,CASE
V(I)-VQ+VTX(I4)

2001 CONTINUE
V(I)-VW)/CASE

2002 CONTINUE
RETURN
END

C
SUBROUTINE MIDPTS(VTXV)
REAL VTX(3,3),V(3,3)
INTEGER IJ,K
EXTERNAL MAGNI

DO 2002 1-1,3J-MOD(,3)+l
K-MOI(J,3)+I
DO 2001 L-1,3
V(L,) - ( VTX(Ij) + VTX(LK) ) / 2

2001 CONTINUE
2002 CONTINUE

RETURN
END

C
SUBROUTINE LENGTH(VTXS)
REAL VTX(3,3),V(3)
REAL S(3),MAGNI
INTEGER IJK
EXTERNAL MAGNI

DO 2002 1-1,3
J-MOD(I,3)+1
K-MOD(J,3)+I
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DO 2001 L-1,3
VO.)-VTX(L4)-VTX(L,K)

2001 CONTINUE
S(I)-MAGNI(V)

2002 CONTINUE
RETURN

C
REAL FUNMTON GTAREA(VTX.CASE)
REAL MAGNI
REAL V(3),VTX(3,3)

ITEER LCASE
EXTERNAL MAGNI

C
C "area" of wire segment - length
C "area" of triangle is 1/2 cross product of two sides
C

IF (CASE.EQ.2) THEN
-' DO 2001 1-1,3

V(I) - VTX(I,2) - VTX(I)
2001 CONTINUJE

GTAREA-MAGNI(V
ELSE IF (CASE.EQ.3) THEN

CALL CROSS1(VTX(V)
GTAREA-MAGNI(V/2

ENDIF
RETURN
END

C
SUBROUTINE CROSS i(VTXNV)
REAL VTX(3,3),V(3)
INTEGER UJK

DO 2001 1-1,3
J-MOD(I,3Yi.
K-MOD(J,3)+l

V(I) - (VTX(J,2)-VTX(J,1)) * (VTX(Y.,3)-VTX(K1))-
+ (VTX(J,3)-VTX(J,1)) * (T(.)VXY,)

2001 CONTIUE
RETURN
END

C
SUBROUTINE CROSS2(V1,V2,V3)
REAL Vl(3),V2(3),V3(3)
INTEGER L4K

DO 2001 1-1,3
J-MOD(I,3)i-
K-MOD(J,3)i-
V3(I) - V1(J)*V2(K) -V1(K)*V2(J)

* 2001 CONTINUE
RETURN
END

* C
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SUBROUTINE CROSS3(V1,V2,V3)
REAL Vl(3)
COMPLEX V2(3),V3(3)
UIGER. 11K

DO 2001 1-1,3
J-MOIXI,3)+l
K-MODXJ,3)+l
V30I) - Vl(J)*V2(K) - Vl(K)*V2(J)

2001 CONTINUE
RETURN
END

INTEGER FUNCTION MAP(IJ,CASE)
INTEGER IIJCASE
DINTGER NNODESNEDGESMAPUNK(1),SEG(4,1),NBOUNDX6,1)
COMMON/DIMEN/NNODESNEDGES
COMMON/MAPUS/MAPUNK
COMMON/S WIRE/SEG
COMMON/PLAT3/NBOUNI)

IF (CASE.EQ.2) THEN
MAP - ABS(SEG(JI))
EF (MAPNEO) MAP-MAPUNK(NEDGES--M4AP)

E9S EIF (CASE.EQ.3) THEN
MAP-ABS(NBOUND(JI))
IF (MAPNE~o) MAP-MAPUNK(MAP)
ENDIF

RETURN
END

C
INTEGER FUNCTION MAP 1(,JCASE)
INTEGER IJCASE
INTEGER JNODESJEDGESAPUNKJ(1),SEGJ(4,1 ),JBOUND(6,1)
COMMON/CDDMEN/JNODESJEDGES
COMMON/CMAPUS/MAPUNKJ
COMMON/CS WIRE/SEGJ
COMMON/CPLAT3/JBOUND

IF (CASE.EQ.2) THEN
MAP1 - ABS(SEGJ(JI))
IF (MAP1.NE~O) MAPl-M[APUNKJ(JEDGES+M[APl)

fLSEIF (CASE.EQ.3) THEN
MAPi-ABS(JBOUND(Jj))
IF (MAP LNEO) MAPi-MAPUNKJ(MAPI)
ENDIF

RETURN
END

C
INTEGER FUNCTION MAP2(I,JCASE)
INTGER I,JCASE
INTEGER KNODESKEDGESMAUNKK,(1),sEGK(4,1XKBOUND(6,1)
COMMON/KDIMEN/KNODESKEDGES
COMMON/KMAPUS/MAPUNKK
COMMON/KS WIRE/SEGK
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COMMON/KPLAT3I'KBOUND
IF (CASE.EQ.2) THEN

MAP2 - ABS(SEGK(J)
IF (MAP2.NE0) MAP2-MAPUNKKKEDESiMAP2)

ELSE IF CCASE.EQ.3) THEN
MAP2-ABS0KBOUNIXJI))
IF (MAM2NE~o) MAP2-MAPUNKK(MAP2)
ENDIF

RETURN
END

C
SUBROUTINE GETRHO(VTXV)
INTEGER I
REAL VTX(3,3),V(3)

DO 2001 1-1,3
VQi) - ( VTXCL2) - VTXO,1)) /2

2001 CONTINUE
* RETURN

END
C

SUBROUTIN P1RHO(VTXIIN)
REAL VTXC3,3),V(3)
INTEGER LJTKL

J-MOD(L3Y)-1
K-MOD(J,3)-1
DO 2001 L-1,3

VCL) - ( VTX(LJ) + VTX(LK) )/2
VWL - ( VWL - VTX(l) /3

2001 CONTINUE
RETURN
END

C
C this routine returns the edges of face F on the perfect conductor
C

SUBROUTINE FACEDG(FE1E2,E3)
* C

INTEER EIE2,E3,F
INTEGER NBOUNIX6,1)
COMMON/PLAT3/NBOUND

C
E1-NBOUND(1,F)
E2-NBOUNDX2,F)
E3-NBOUNDX3,F)
RETURN
END

C
* C this routine returns the edges of face F on the coating

C
SUBROUTINE FACEDG1(FElX~2,E3)

C
INTEGER ElE2,E3,F
INTEGER JBOUNIX6,1)
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COMMON/CPLAT3/JBOUND
C

E1-JBOUND(1,F)
E2-JBOUNDIXZF)
E3-JBOUNDX3,F)
RETURN
END

C
C this routine returns the edges of face F on the coating
C

SUBROUTINE FACGD2(FE1,E2E3)
C

INTEGER E1lE2,E3,F
INTEGER KBOUNIX6,1)
COMMON/KPLAT3/KBOUND

C
El-KBOUND(1,F)
E2-KBOUND(2,F)
E3-KBOUNDX3,F)

* RETURN
END

C
C this routine returns the vertices of face F on the perfect conductor
C vGiJ) - vertex opposite jth edge; i-1-x, 1-2-y, i-3-z
C

SUBROUTINE VTXCRD(FV)
C

INTEGER 1JXIE3P(3)NCONN(2,1)
REAL V(3,3)XDATNOD(4.l)
COMMON/PLATI/DATNOD
COMMON/PLAT2/NCONN

* C
CALL FACEG(FX1tE2,E3)

* C
IF (E1.GT.o) THEN

P(2)-NCONN(1,E1)
P(3)-NCONN(2,E1)

P(2)-NCONNC2;-E1)
P(3)-NCONN(lj-E1)
ENDIF

IF (E2.GT.O) THEN
a. P(1)-NCONN(2,E2)

FT SE
P(1)-NCONN(1,-E2)
ENDIF

C
DO 2002 1-1,3
DO 2001 J-1,3

V(JI)-DATNOD(JPO))
2001 CONTINUE
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2002 CONTINUE
C

REIURN
END

C
C this routine returns the vertices of face F on the coating
C v(0~j - vertex opposite jth edge; i-I-x, i-2-y, i-3-z
C

SUBROUTINE VTXCRD1CF~V)
C

INTEGER L1FEIXZE3P(3),JCQNN(2,1)
REAL VC3,3),CDATNOD(4,1)
COMMON/CPLAT1/CDATNOD
COMMON/CPLAT2/JCONN

C
CALL FACEDG1CFE1,EXE)

C
IF CEl.GT.o) MhEN

P(2)-JCONN(1,El)
P(3)-JCONN(2,E1)
El SE

P(2)-JCONNC2,-E1)
P(3)-JCONN(1,-El)
ENDIF

C
]IF (E2.GT.0) THEN

P(l)-JCONN(2,E2)
ELS

P(i)-JCONNC1,-E2)
ENDIF

C
DO 2002 1-1,3
DO 2001 J-1.3

V(Jj)-CDATNOD(JXp()
2001 CONTINUE
2002 CONTINUE
C

REIURN
END

C
C this routine returns the vertices of face F on the coating
C v~iqj - vertex opposite jth edge; i-1-x, i-2-y, i-3-z
C

SUBROUTINE VTXCRD2(FV)
C

INTEGER IF1,E3P(3)KCONN(2,I)
REAL V(3,3),KDAmNOD(4,1)
COMMON/KPLAT1/KDATNOD
COMMON/KPLAT2/KCONN

C
CALL FACEDG2(FE1,E2,E3)

C
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IF (EL.GT.0) THEN
P(2)-KCONN(IEl)
P(3)-KCONN(2,EI)

ELSE

P(2)-KCONN(2,-E1)
P(3)-KCONN(1j-EI)
ENDIF

C
IF (E2.GT.0) THEN

P()-KCONN(2,E2)
ELSE

P(1)-KCONN(1,-E2)
ENDIF

C
DO 2002 1-1,3
DO 2001 J-1,3

V(Jj)-KDATNODJ))
2001 CONTINUE
2002 CONTINUE
C

RETURN
END

C
C this routine returns the endpoints of segment I on perfect conductor
C vtx(i,1) is the lower numbered endpoint
C

SUBROUTINE ENDPTS(LVTX)
REAL VTX(3,3),WR(4,1)
MIrEGER IJKSEG(4,1)
COMMON/RWIRE/WR
COMMON/SWIRE/SEG

DO 2002 J-1,2
DO 2001 K-1,3

VTX(KJ)-WR(KSEG(Jj))
2001 CONTINUE
2002 CONTINUE

RETURN
END

C
C this routine returns the endpoints of segment I on coating
C vtx(ii) is the lower numbered endpoint
C

SUBROUTINE ENDPTSl(LVTX)
REAL VTX(3,3),CWR(4,1)
INTEGER LJXKSEGJ(4,1)
COMMON/CR WIRE/CWR
COMMON/CSVWIRE/SEGJ

DO 2002 J-1,2
DO 2001 K-1,3

VTX(K,J)-CWR(K,SEGJ(J,I))
2001 CONTINUE
2002 CONTINUE

4 .- ,- . . . . . , . . . . . . . . . . . ... . . . .-
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RETURN
END

C
C this routine returns the endpoints of segment I on coating
C vtx(i4i) is the lower numbered endpoint
C

SUBROUTINE ENDPTS2(LVTX)
REAL VTXC3,3),KWRC4,1)
INTEGER 14,KSEGKC4,1)
COMMON/KRWIRE/K WR
COMMON/KS WIRESEGK

DO 2002 J-1,2
DO 2001 K-1,3

vT.X(KJ)-KWR(KSEGK(Jj))
2001 CONTINUE
2002 CONTINUE

RETURN
END

C REAL FUNCTON GETRAIXIASE)

REAL WR(4,1)
INTEGER LCASESEG(4,1)
COMMON/RWIRE/WR
COMMON/SWIIRE/SEG

IF (CASE.EQ.2) THEN
GETRAD-( WRC4,sEG~j)) + WR(4,EG(2O) ) /2

ELa IF (CASE.EQ.3) TMEN
GETRAD-0

ENDIF
RETURN
END

C
REAL FUNCTON GErRADI(ILCASE)
REAL CWRC4,1)
INTGER ICASE,SEGJ(4,1)
COMMON/CRVWIRE/C WR
COMMON/CS WIRE/SEGJ

IF (CASE.2) THEN
GETRADl-( CWRC4,SEGJ(1,I)) + CWR(4SGJ(2O) ) /2

ELS IF (CASE.EQ.3) THEN 9

GETRAD1-O
ENDIF

RETURN
END

C
REAL FUNCTON GETRAD2(I,CASE)
REAL KWR(4,l)
INTGER I,CASESEGK(4,I)
COMMON/KR WIE/K WR
COMMON/KSWESEGK

IF (CASE.EQ.2) THEN
GETRAD2-( KWRC4,SEGK(1Ij)) + KWR(4aSGK(2,I)) )/2
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ELSE IF (CASEEQ.3) THEN
GETRAD2-0

ENDIF
RETURN
END

C
C sign function
C

INTEGER FUNCTION ISGN(C)
INTEGER C
IF (CNE0) THEN

ISGN-C/ABS(C)
ELSE

ISGN-0
ENDIF

RETURN
END

C
C sign function
C

INTEGER FUNCTION RSGN(C)
REAL C
IF (C.NE0) THEN

RSGN-C/ABS(C)
ELSE

RSGN-0
ENDIF

RETURN
END

C
Cthis routine employs a 7-point numerical integration rule and
Canalytical integration to evaluate the vector and scalar potential
Cintegrals over a triangular region.
C

SUBROUTINE NINT(VXV1,CVEC,CXSCETAPOTCPHIP1,RC1AREADIST)
C
C VX(3,3) are the vertices of the source triangle
C V1(3) are the coordinates of the observation centroid
C

COMPLEX JICFCFX.CFNCF1,CVECCXSLCETACPHI
REAL XSI(7),ETA(7),WGHT(7)
REAL PLKNI(3),PI(3),RCI(3)
REAL DRMAGNI)AL11TPOTAREADIST
REAL VX(3,3),V1(3)
INTEGER ,J

C
COMMON/CONST/PLKNJI
COMMON/NUMINT/XSIETAWGHT
EXTERNAL MAGNI

C
PARAMETER (ALvaT-1D-10)

C

]~
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DATA XSI/ 0.3333333333, 0.05971587, 0A7014206,
+ 047014206, 0.79742699, 0.10128651,0.10128651/

DATA ETA/ 0.3333333333, 0A7014206, 0.05971587,
+ 0.47014206, 0.10128651, 0.79742699,0.10128651/

DATA WGHT/ 0.225, 0.13239415, 0.13239415,
+ 0.13239415, 0.12593918, 0.12593918,0.12593918/

CF-0
CFX-0
CFN-0
DIST - 0
DO 2002 1-1,7

DO 2001 J-1,3
RI(J) - (VI(J)-VX(J,I)) - (VX(J,2)-VX(J,1))*xSI(I) -

+ (VX(J,3)-VX(J,1))*ErA(I)
2001 CONTINUE

DR-MAGNI(R1)
IF (LEQ.1) THEN

DIST - DR
ELSE IF (DR.LT.IIST) THEN

DIST - DR
ENDIF
IF (DR.E.ALur) THEN
CF-J1K.N

CFI-(EXP(-JI*KNDR)-I)/DR
ENDIF

CF.CF+CF*WGHIW
,-CFX+CF*WGHT(I)*XS(I)
CFNFN+CFI*WGHTWETA()

2002 CONTINUE
C

CVEC - CF * AREA
CXSI - CFX * AREA
CETA - CFN *AREA

C
CALL INTRL(VXV1,POTP1,RC1AR
CPHI-CVEC+POT

* RETURN
END

C
Cthis routine employs a 7-point numerical integration rule and
Canalytical integration to evaluate the vector and scalar potential
Cintegrals over a triangular region.
C

SUBROUTINE N1NT7A(VXV1,CVEC1,CXS1,CETA1POTCPHI 1,PIRC1,
+ AREADIST)

C
C VX(3,3) are the vertices of the source triangle
C V1(3) are the coordinates of the observation centroid
C

COMPLEX JLCFCFXCFNCF1,CVEC1,CXSIICETA1,CPHI,KN1
REAL XSI(7),ETA(7),WGFT(7)
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REAL PINR1(3),P1(3),RCIC3)
REAL DRMAGNIALIMYnOTAREA,DIST
REAL VXC3,3),Vl(3)
INTEGER 1,1

C
COMMON/CONST/PIKN,JI
COMMON/CONSTi/KNI
COMMON/NUMINT/XSI,AWGHT
EXTERNAL MAGNI

C
PARAMMTER (ALmvfrl-D-lo)

C
CF-0
CFX-0
CFN-0
DIST- 0
DO 2002 1-1,7

DO 2001 1-1,3
R1(J) - (VI(J)-:VXCJ,i)) - CVX(J,2)-VX(j,1))%xsI) -

+ (VX(J,3)-VXCJ,1))ETAOl)
2001 CONTINUE

DR-MAGNI(RI)
IF (LEQ.1) THEN

DIST -DR
ELSEIF (DR.LT.DIST) THEN

DIST -DR
ENDEP
IF (DRIMEALnMrr THEN

cF1mJKN

CF1-(XP(JI*KN1DR)-l)/DR
ENDEF

CF--CF+,CFl*WGHT(I)
CFX-MF+CF1*WGHT(I)*XSI(I)
CFN-CFN+CF1*WGHT(I)*FAOl)

2002 CONTINUE
C

CVECI - CIF AREA
MXS1 - CFX AREA

CETAl - CFN *AREA

C
CALL INGRL(VXV1POT,RC1,AREA.)
CPHI1 - CVECl + POT
RETURN
END

C
Cthis routine employs a 7-point numerical integration rule and
Canalytical integration to evaluate the vector and scalar potential
Cintegrals over a triangular region.
C

SUBROUTINE NINT7BVX.V1,CVECKOCXSIKOCErAKOAREADIST)
C
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C VX are the vert-'.s of the source triangle
C Vl(3) are the coordinates of the observation centroid
C

COMPLEX JICF,CFXCFNCF1,CVECKOCXSIKOCETAKO
REAL XSI(7)XrA(7)WGHT7)
REAL PKNR1C3)
REAL DRIMAGNIAREA.DIST
REAL VX(3,3),V1(3)
INTEGER 14

C
COMMON/CONST/PIKN,JI
COMMON/NUMINT/XSIEA.WGHT
EXTERNAL MAGNI

C
CF-0
CFX-0
CFN-0
DIST- 0
DO 2002 1-1,7

DO 2001 J-1,3
RIMJ - (Vi(J)-VX(J,i)) - (VX(J,2)-VX(J,1))%xsI) -

+ CVXJ,3)-VXJ,))ETA(I)
2001 CONTINUE

DR-MAGNI(Rl)
IF (LEQ.1) THEN

DIST -DR
ELS IF (DR.LT.DIST) THEN

DIS -DR
ENDIF
CFI-(1+JrKN*DR*EXP(-J*KN*DR))/(DR*DR*DR)
CF -CF +CF1 *WGHMI)
CFX- CFX + CF1 * WGHT(I * xs1Q)
CFN- CFN + CFl * WGHT(I * ErACI)

2002 CONTINUE
C

CVECK0 - CF *AREA

CXSIKO - CFX ARE
CETAKO - CFN *AREA

C
RETURN
END

C
Cthis routine employs a 7-point numerical integration rule and
Canalytical integration to evaluate the vector and scalar potential
Cintegrals over a triangular region.
C

SUBROUTINE NIN7(VXV1,CVECK1,CXSIK1,CETAK1,AREADIST)
* C

C VX(3,.3) are the vertices of the source triangle
C Vl(3) are the coordinates of the observation centroid
C

COMPLEX .JLCFCFX.CFNCF1,CVECK1,CXSIK1,CETAK1,KN1
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REAL XSI(7),ETA(7),WGHT()
REAL PI.KN.R1(3)
REAL DRIMAGNIAREADIST
REAL VXC3,3)V1(3)
INTEER 14

COMMON/CONST/PI.KNJI
COMMON/CONSTI/KNI
COMMON/NUMINT/XSIEA.WGHT
EXTERNAL MAGNI

C
CF-0
CFX-0
CFN-0
DIST -0
DO 2002 1-1,7

DO 2001 J-1,3
RIMJ - Cvl(J)-VX(j,i)) - CVX(J,2)-VX(j,1)?%xs(I)-

+ CVX(J,3)-VX(J,1))EAQ)
2001 CONTINUE

DR-MAGNI(R1)
IF (LEQ.i) THEN

DIST -DR
ELSE F CDR.LT.DIST) THEN

DIST -DR
ENDIF
CFI-(1+JPKN1*DRXEXP(JSKN1*DR))/(DR*DR*DR)
CF - CF + CF1 * WGHT(I
CFX- CFX + CF1 * WGH'I(I * S(
CEN- CFN + CF1 * WGH'r(I * ETAO)

2002 CONTINTUE
C

CVECK1 - CF *AREA

CXSxKi - CFX AREA
CETAKI - CFN * AREA

C
RETURN
END

C
C this subroutine, with the help of subroutine ca, evaluates
C the h/r integral over a triangular region and the line integral
C of Cr times the normal to the triangle boundary) over the
C triangle boundary.
C

SUBROUTINE INTGRL(VXN1JPOTP1RC1,AREA)
REAL PLVDOTALPLMZNOTP0,POTVAL1,VAL2AREA
REAL VX(3,3),Vl(3),UN1(3),UL1(3),UU1(3),Tl(3),p1(3),RC1(3)
INTEGER LJKISGNRSGN
COMMON/CONST/PI
EXTERNAL RSGNVDOT

C
C init
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C
POT-0

C
C calculate unit normal - UNI
C

CALL CROSS1(VXUN1)
DO 2001 1-1,3

UNI)=UNI(1)/(2*AREA)
2001 CONTINUE
C
C ZNOT is the perpendicular (to the source triangle) distance
C between the source (vertex 1) and observation triangles
C
C RC1 is the nonperpendicular ("coplanar" according to source tri)
C vector from source (vertex 1) to observation triangles
C
C NOT USED call centroid(vtxtl)

DO 2002 K-1,3
Tl(K)-Vl(K)-VX(K1)

2002 CONTINUE
ZNOT-VDOT(T1UN1)

C

DO 2003 1-1,3
RC WOVl()-ZNOT*UN1()
PIO)-O

2003 CONTINUE
ZNOT - ABS(ZNOT)

C
C integrate over each edge
C ULl is unit edge
C

-, DO 2009 1-1,3

J-MODXL3)+l
DO 2004 K-13

ULI(K)-VX(KJ)-VX(K)
2004 CONTINUE

CALL UNMT(UL1,UL1)
C

CALL CROSS2(ULIUN1,UU1)
DO 2005 K-1,3
Tl(K)-VX(KI)-RC1(K)

2005 CONTINUE
PO-VDO(rT1,UU1)
SGN-RSGN(PO)
PO-ABS(PO)
DO 2006 K-1,3

TI(K)-VX(KJ)-Vl(K)
2006 CONTINUE

ALP-VDOT(T1,ULl)
DO 2007 K-1,3

TI(K)-VX( KW)-V(K)
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2007 CONTINUE
AL.M-VDOT(T1,UL1)

CALL CA(POZNOT.ALPXALMVAL1,VAL2)
POT-POT+VALl*,SJN
DO 2008 K-1,3

P1(K)-P1(K)+UU1(K)*VAL2
2008 CONTINUE
2009 CONTINUE
C

RETURN
END

C

C

SUBROUTINE CA(PDALPXALMNALA.VALL)
REAL PO,DR,RPRMALPALMMINTOPJ3OT
REAL LPILMNALAYVALLALGTRMARGTNPARGTNM

C
C MEN depends on machine precison
C -use 1D-5 for 32 bit reals
C -can use 11>8 for 64 bit reals
C

PARAMETER. (MIN-1D-5)
C

RO - D**2 + P0**2
RP - SQRT( RO + ALP**2)
RM -SQRT( RO + ALM**2)
TOP -RP+ALP

BOT -RM+ALM

IF (ALP.LT.0.AND.TOP.LTMI) TOP -RO0/ABS(ALP)/2

IF (ALM.LT.0.AND.BOT.LT.MIN) BOT -RO0/ABS(ALM)/2

IF (ALP.LT.OA ThALM.LT0AND.TOPLTMIN.AND.BOT.LTMI) THEN
ALGTRM - LOG(ALM/ALP)

E
ALGTRM - LOG(TOP/BOT)
ENDIF

IF (D.GT.0) THEN
ARGTNP-POSALP/(RO+D*RP)
ARGTNM-PO0ALM/(RO+D*RM)
VALA-PO'ALGTRM-D(ATAN(ARGTNP)-ATAN(ARGTNM))

VALA-PO*ALGTRM
ENDIF

VALL-(RO*ALGTRM+ALP*RP-ALM*RM)/2
C

RETURN
END

C
C save matrix
C

SUBROUTINE SAFECCZJUNKNSKUNKNSNUNKNSP)
INTEGER JNNKNsuNSp
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COMPLEX CZ(2*JUNKNSIKIJNKNS+NUNKNS)
IF (P.EQ.1) THEN

REVIME22)
REWIND26)
DO 10 J-1,JNKNS

READ(22) (CZ(I),-1JUNKNS)
R.EAD(26) (CzWI-3UNKNS+IJNKNS+J)
wRrTE(57) (CZOI-1,JUNKNS+J)

10 CONTINUE
CLOSE(22)
CLOSE(26)

ELSE IF (P.EQ.2) THEN
REWIND23)
RE WIN27)
REWQ31)
DO 11 J-1,KUNKNS

READ(23) (CzWIJ.-1,JuNKNS)
READ(27) (CZ(IJURNKNS+1,2*JUNKNS)
READX31) (CZOI),F2*JUNKNS+1,2SJNKNS+J)
wRrTE57) (CZOI)I1,2*JUNKNS+J)

11 COINrrtNUE
CLOSE(23)
CLOSE(27)
CLOSE(31)

ElE
REWINDX24)
REVWINI2 8)
REINI36)
DO 12 J-1,NUNKNS

R.EAIX24) (CZI-1JUNKNS)
READ(28) (CZOI)J..JUNKNS+1,2*JUNKNS)
DO 20 L-1,KUNKNS

CZ(2*IUNKNS+L) - 0
20 CONTNUE

REAIX36) (CZ(I)Ju.2*JNKNS+KUNKNS+1,2*JUNKNS+KUNKNS+J)
WRITE57) (CZ(IJ1,2sJxJNKNS+KUNKNs+J)

12 CONTINUE
CLOSE(24)
CLOSE(28)
CLOSE(36)

ENDIF
C

RETURN
END
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Appendix E".

RADAR CROSS SECTION MEASUREMENTS AND PREDICTIONS
J

E.1 Introduction

This appendix contains the radar cross section (RCS) plots discussed in

Chapter 5. The graphs of the experimental RCS data generated from the experimental

RCS measurements performed at the MIT Lincoln Laboratory Group 95 RCS Mea-

surement Facility are contained in Section E.2. The graphs of the theoretical RCS

predictions generated from the EFIE series of computer programs discussed in Chapter

3 are contained in Section 3.3.

E.2 Experimental Radar Cross Section Measurements

This section contains the graphs of the experimental RCS data generated

from the experimental RCS measurements performed at the MIT Lincoln Laboratory

Group 95 RCS Measurement Facility. Each figure contains two RCS plots. The top plot

in each figure is the horizontally transmitted and horizontally received monostatic far-

field RCS (COhh) versus angle. Horizontally transmitted means the electric field of the

incident wave is polarized parallel to the edge of the square aluminum plate when the

incident wave is travelling in the plane of the plate and normal to an edge. The bottom

plot in each figure is the vertically transmitted and vertically received monostatic far-

field RCS (ar,,) versus angle. Therefore, each figure contains the co-polarized RCS

plots for two orthogonally polarized incident electric fields.
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E.3 Theoretical Radar Cross Section Predictions

This section contains the graphs of the theoretical RCS predictions discussed

in Chapters 3 and 5. They were generated from the EFIE series of computer programs.

Each figure contains two RCS plots. The top plot in each figure is the horizontally

transmitted and horizontally received monostatic far-field RCS (ahh) versus angle. Hor-

izontally transmitted means the electric field of the incident wave is polarized parallel

to the edge of the square plate when the incident wave is travelling in the plane of the

plate and normal to an edge. The bottom plot in each figure is the vertically trans-

mitted and vertically received monostatic far-field RCS (o,) versus angle. Therefore,

each figure contains the co-polarized RCS plots for two orthogonally polarized incident

electric fields.
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Figure E.24. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb FGM 40 coated

10cm by 10cm square plate: (top) Oahh versus angle and (bottom) a,, versus

angle (1 of 5)
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Figure E.25. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb FGM 40 coated

10cm by 10cm square plate: (top) ahh versus angle and (bottom) a, versus

angle (2 of 5)
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Figure E.26. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb FGM 40 coated

10cm by 10cm square plate: (top) ahh versus angle and (bottom) or, versus

angle (3 of 5)
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Figure E.27. Theoretical monostatic 3.0 GHz RCS plots for Eccosorb FGM 40 coated

10cm by 10cm square plate: (top) ahh versus angle and (bottom) a , versus

angle (4 of 5)
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